Что такое магнитный пускатель и схема его подключения

Назначение, устройство и работа магнитного пускателя.

11 Фев 2014г | Раздел: Электрика

Здравствуйте, уважаемые читатели сайта sesaga.ru. С этой статьи мы начнем изучение магнитного пускателя и все, что с ним связано, а идею этой темы подсказал постоянный читатель сайта Сергей Кр.

Магнитный пускатель является коммутационным аппаратом и относится к семейству электромагнитных контакторов, позволяющий коммутировать мощные нагрузки постоянного и переменного тока, и предназначен для частых включений и отключений силовых электрических цепей.

Магнитные пускатели применяются в основном для пуска, останова и реверсирования трехфазных асинхронных электродвигателей, однако, из-за своей неприхотливости они прекрасно работают в схемах дистанционного управления освещением, в схемах управления компрессорами, насосами, кран-балками, тепловыми печами, кондиционерами, ленточными конвейерами и т.д. Одним словом, у магнитного пускателя обширная область применения.

Как таковой магнитный пускатель уже трудно встретить в магазинах, так как их практически вытеснили контакторы. Причем по своим конструктивным и техническим характеристикам современный контактор ничем не отличается от магнитного пускателя, а различить их можно только по названию. Поэтому, когда будете приобретать в магазине пускатель, обязательно уточняйте, что это — магнитный пускатель или контактор.

Мы рассмотрим устройство и работу магнитного пускателя на примере контактора типа КМИ – контактор малогабаритный переменного тока общепромышленного применения.

Принцип работы магнитного пускателя.

Принцип работы очень простой: напряжение питания подается на катушку пускателя, в катушке возникает магнитное поле, за счет которого вовнутрь катушки втягивается металлический сердечник, к которому закреплена группа силовых (рабочих) контактов, контакты замыкаются, и через них начинает течь электрический ток. Управление магнитным пускателем осуществляется кнопками «Пуск», «Стоп», «Вперед» и «Назад».

Устройство магнитного пускателя.

Магнитный пускатель состоит из двух частей: сам пускатель и блок контактов.

Хотя блок контактов и не является основной частью магнитного пускателя и не всегда он используется, но если пускатель работает в схеме где должны быть задействованы дополнительные контакты этого пускателя, например, реверс электродвигателя, сигнализация работы пускателя или включение дополнительного оборудования пускателем, то для размножения контактов, как раз, и служит блок контактов или, как его еще называют — приставка контактная.

Блок контактов или приставка контактная.

Внутри блока контактов (приставки контактной) встроена подвижная контактная система, которая жестко связывается с контактной системой магнитного пускателя и стает с ним как бы одним целым. Крепится приставка в верхней части пускателя, где для этого предусмотрены специальные полозья с зацепами.

Контактная система приставки состоит из двух пар нормально замкнутых и двух пар нормально разомкнутых контактов.

Чтобы идти дальше давайте сразу разберемся: что есть нормально замкнутый и нормально разомкнутый контакты. На рисунке ниже схематично показана кнопка с парой контактов под номерами 1-2 и 3-4, которые закреплены на вертикальной оси. В правой части рисунка показано графическое изображение этих контактов, используемое на электрических принципиальных схемах.

Нормально разомкнутый (NO) контакт в нерабочем состоянии всегда разомкнут, то есть, не замкнут. На рисунке он обозначен парой 1–2, и чтобы через него прошел ток контакт необходимо замкнуть.

Нормально замкнутый (NC) контакт в нерабочем состоянии всегда замкнут и через него может проходить ток. На рисунке такой контакт обозначен парой 3–4, и чтобы прекратить прохождение тока через него, надо контакт разомкнуть.

Теперь, если нажать кнопку, то нормально разомкнутый контакт 1-2 замкнется, а нормально замкнутый 3-4 разомкнется. О чем показывает рисунок ниже.

Вернемся к блоку контактов.
В исходном состоянии, когда магнитный пускатель обесточен, нормально разомкнутые контакты 53NO–54NO и 83NO–84NO разомкнуты, а нормально замкнутые 61NC–62NC и 71NC–72NC замкнуты. Об этом говорит шильдик с номерами клемм контактов, расположенный на боковой стенке блока контактов, а стрелка показывает направление движения контактной группы.

Теперь, если на катушку пускателя подать напряжение питания, то сердечник потянет за собой контакты блока контактов и нормально разомкнутые замкнутся, а нормально замкнутые разомкнутся.

Фиксируется блок контактов на пускателе специальной защелкой. А чтобы блок снять, достаточно приподнять защелку и выдвигать блок в сторону защелки.

Магнитный пускатель.

Магнитный пускатель состоит как бы из верхней и нижней части.

В верхней части находится подвижная контактная система, дугогасительная камера и подвижная половинка электромагнита, которая механически связана с группой силовых контактов подвижной контактной системы.

Нижняя часть пускателя состоит из катушки, возвратной пружины и второй половинки электромагнита. Возвратная пружина возвращает верхнюю половинку в исходное положение после прекращения подачи питания на катушку, тем самым, разрывая силовые контакты пускателя.

Обе половинки электромагнита набраны из Ш-образных пластин, сделанных из электромагнитной стали. Это наглядно видно, если вытащить нижнюю половинку электромагнита.

Катушка пускателя намотана медным проводом, и содержит N-ое количество витков, рассчитанное на подключение определенного питающего напряжения равного 24, 36, 110, 220 или 380 Вольт.

Ну и как происходит сам процесс.
При подаче напряжения питания в катушке возникает магнитное поле и обе половинки стремятся соединиться, образуя замкнутый контур. Как только отключаем питание, магнитное поле пропадает, и верхняя часть возвращается возвратной пружиной в исходное положение.

Теперь осталось разобраться с питанием и характеристиками.
На боковой стенке пускателя, так же, как и у блока контактов, нанесена информация об электрических параметрах пускателя и для удобства условно разделена на три сектора:

Сектор №1.

В первом секторе дана общая информация о пускателе и его область применения:

50Гц – номинальная частота переменного тока, при которой возможна бесперебойная работа пускателя;

Категория применения АС-3 – двигатели с короткозамкнутым ротором: пуск, отключение без предварительной остановки.
Например: этот пускатель можно использовать для запуска и останова асинхронных двигателей с короткозамкнутым ротором, используемых в лифтах, эскалаторах, ленточных конвейерах, элеваторах, компрессорах, насосах, кондиционерах и т.д.

Для характеристики коммутационной способности контакторов и пускателей переменного тока установлены четыре категории применения, являющиеся стандартными: АС1, АС2, АС3, АС4. Каждая категория применения характеризуется значениями токов, напряжений, коэффициентов мощности или постоянных времени, условиями испытаний и других параметров установленных ГОСТ Р 50030.4.1-2002.

Iе 9А – номинальный рабочий ток. Это ток нагрузки, который в нормальном режиме работы может проходить через силовые контакты пускателя. В нашем примере этот ток составляет 9 Ампер.

Категория применения АС-1 – неиндуктивные или слабо индуктивные нагрузки, печи, сопротивления. Например: лампы накаливания, ТЭНы.

Ith 25A – условный тепловой ток (t° ≤ 40°). Это максимальный ток, который контактор или пускатель может проводить в 8-часовом режиме так, чтобы превышение температуры его различных частей не выходило за пределы 40°С.

Читайте также:  Японские шторы в дизайне интерьера

Сектор №2.

В этом секторе указана номинальная мощность нагрузки, которую могут коммутировать силовые контакты пускателя, и которая характеризуется категорией применения АС3 и измеряется в кВт (киловатт). Например, через контакты пускателя можно пропустить нагрузку мощностью 2,2 кВт, питающуюся переменным напряжением не более 230 Вольт.

Сектор №3.

Здесь показана электрическая схема пускателя: катушка и четыре пары нормально разомкнутых контактов – три силовых (рабочих) и один вспомогательный. От катушки через все контакты проходит пунктирная линия, которая указывает, что все четыре контакта замыкаются и размыкаются одновременно.

Напряжение питания 220В подается на катушку через контакты, обозначенные как А1 и А2.

Современные магнитные пускатели выпускают с двумя однотипными контактами от одного вывода катушки. Их выводят с противоположных сторон, маркируют одинаковым буквенным и цифровым значением, и соединяют между собой проволочной перемычкой. В нашем случае это выводы с маркировкой А2. Все это сделано для удобства монтажа схемы. И если придется собирать схемы с участием магнитного пускателя, используйте оба эти контакта.

Теперь осталось рассмотреть контактную группу пускателя. Здесь все просто.
Силовыми контактами являются три пары: 1L1–2T1; 3L2–4T2; 5L3–6T3 — к ним подключается нагрузка, которую Вы хотите запитывать через магнитный пускатель или контактор. Причем контакты 1L1; 3L2; 5L3 являются входящими – к ним подводится напряжение питания, а 2Т1; 4Т2; 6Т3 являются выходящими – к ним подключается нагрузка. Хотя разницы здесь нет — что куда, но это считается за правило, чтобы можно было разобраться в монтаже другому человеку, не производившему монтаж.

Последняя пара контактов 13НО–14НО является вспомогательной и эту пару используют для реализации в схеме самоподхвата пускателя. То есть, эта пара нужна, чтобы при включении в работу, например, двигателя, все время его работы не пришлось держать нажатой кнопку «Пуск». О самоподхвате мы поговорим в следующей части.

Ну и последнее, на что хотел обратить Ваше внимание, это на то, что современные пускатели, автоматические выключатели и УЗО теперь можно размещать в одном ящике и на одну дин рейку. Так что учитывайте это при выборе ящика.

Теперь я думаю Вам понятно назначение, устройство и работа магнитного пускателя, а во второй части мы рассмотрим схемы подключения магнитного пускателя.
А пока досвидания.
Удачи!

Что такое магнитный пускатель и схема его подключения

Прежде всего, необходимо разобраться с тем, что представляет собой коммутационное устройство и для чего оно требуется. Тогда справиться с задачей создания схемы на основе МП для освещения, обогрева, подключения насосов, компрессоров или другого электрооборудования станет гораздо проще.

Контакторы или так называемые магнитные пускатели (МП) — это электрооборудование, предназначенное для управления и распределения энергии, подаваемой на электродвигатель. Наличие этого приспособления предоставляет следующие преимущества:

  • Защищает от пусковых токов.
  • В хорошо составленной схеме предусмотрены органы защиты в виде электрических блокировок, цепи самоподхвата, тепловых реле и т.п.
  • Устанавливаются управляющие элементы (кнопки) для возможности пуска двигателя в режиме реверса (обратного хода).

Схемы подключения контактора довольно простые, позволяющие самостоятельно собрать оборудование.

Назначение и устройство

Перед подключением необходимо ознакомиться с принципом работы устройства и его особенностями. Включает контактор МП управляющий импульс, который исходит от пусковой кнопки после ее нажатия. Так осуществляется подача на катушку напряжения. Согласно принципу самоподхвата, контактор удерживается в режиме подключения. Суть этого процесса заключается в параллельном подключении дополнительного контакта к кнопке пуска, что организовывает подачу на катушку тока, поэтому необходимость удерживания в нажатом состоянии кнопки запуска пропадает.

С оборудованием кнопки отключения в схеме становится возможным разрыв цепи катушки управления, что отключает МП. Управляющие кнопки устройства носят название кнопочного поста. Они имеют по 2 пары контактов. Универсализация управляющих элементов сделана для организации возможных схем с моментальным реверсом.

Кнопки маркируются названием и цветом. Как правило, включающие элементы называются «Старт», «Вперед» или «Пуск». Обозначаются зеленым, белым или другим нейтральным цветом. Для размыкающего элемента используется название «Стоп», кнопка агрессивного, предупреждающего цвета, обычно красного.

Цепь необходимо коммутировать нейтралью, при использовании в ней катушки на 220 В. Для вариантов с электромагнитной катушкой с рабочим напряжением 380 В, на цепь управления подается снятый с другой клеммы ток. Поддерживает работу в сети с переменным или постоянным напряжением. Принцип схемы базируется на электромагнитной индукции используемой катушки с вспомогательными и рабочими контактами.

Различают два вида МП с контактами:

  1. Нормально замкнутыми — отключение питания на нагрузке происходит в момент срабатывания пускателя.
  2. Нормально разомкнутыми — подача питания осуществляется только во время работы МП.

Второй тип применяется более широко, поскольку большинство устройств функционирует ограниченный период, пребывая основное время в состоянии покоя.

Состав и назначение частей

В основе конструкции магнитного контактора лежит магнитопровод и катушка индуктивности. Магнитопровод представляет собой разделенные на 2 части металлические элементы в форме «Ш», зеркально друг к другу расположенные внутри катушки. Их средняя часть играет роль сердечника, усиливая индукционный ток.

Магнитопровод оснащен подвижной верхней частью с закрепленными контактами, к которым подводится нагрузка. На корпусе МП закрепляются неподвижные контакты, на которых устанавливается питающее напряжение. Внутри катушки на центральном сердечнике установлена жесткая пружина, препятствующая соединению контактов в выключенном состоянии устройства. При этом положении на нагрузку питание не подается.

В зависимости от конструкции, бывают МП малых номиналов на 110 В, 24 В или 12 В, но более широко используются с напряжением 380 В и 220 В. По величине подаваемого тока различают 8 категорий пускателей: «0» — 6,3 А; «1» — 10 А; «2» — 25 А; «3» — 40 А; «4» — 63 А; «5» — 100 А; «6» — 160 А; «7» — 250 А.

Принцип работы

В нормальном (отключенном) состоянии размыкание контактам магнитопровода обеспечивает установленная внутри пружина, приподнимающая верхнюю часть устройства. При подключении к сети МП, в цепи появляется электрический ток, который, проходя по виткам катушки, генерирует магнитное поле. В результате притяжения металлических частей сердечников пружина подвергается сжатию, допуская замыкание контактов движимой части. После этого ток получает доступ к двигателю, запуская его в работу.

ВАЖНО: Для переменного или постоянного тока, который подается на МП, необходимо выдерживать указанные производителем номинальные значения! Как правило, для постоянно тока предельное значение напряжения составляет 440 В, а для переменного не должно превышать показатель 600 В.

Читайте также:  Электрическая цепная пила какую выбрать для дачи или для профессиональных работ

Если нажимается кнопка «Стоп» или другим способом отключается питание МП, то катушка прекращает генерировать магнитное поле. В результате этого пружина легко выталкивает верхнюю часть магнитопровода, размыкая контакты, что приводит к прекращению подачи на нагрузку питания.

Схема подключения пускателя с катушкой 220 В

Для подключения МП используется две отдельные цепи — сигнальная и рабочая. Работой устройства управляют посредством сигнальной цепи. Проще всего рассматривать их по отдельности, чтобы легче было разобраться с принципом организации схемы.

Питание на устройство подается через выведенные на верхнюю часть корпуса МП контакты. Их обозначают в схемах А1 и А2 (в стандартном выполнении). Если устройство рассчитано на работу в сети с напряжением 220 В, то именно на указанные контакты будет подаваться это напряжение. Принципиального различия для подключения «фазы» и «нуля» нет, но обычно на контакт А2 подключается «фаза», поскольку в нижней части корпуса данный вывод дублируется, что облегчает процесс подключения.

Для подачи нагрузки от источника питания используются контакты, расположенные на нижней стороне корпуса и промаркированные как L1, L2 и L3. Не имеет значение тип тока, может быть постоянным или переменным, главное — соблюдение лимита номинала, ограничивающегося напряжением 220 В. Снять напряжение можно с выходов с обозначением T1, T2 и T3, которое можно использовать для питания ветрогенератора, аккумулятора и других приборов.

Самая простая схема

При подсоединении к контактам движимой части МП сетевого шнура с последующей подачей с аккумулятора напряжения, величиной 12 В, на выходы L1 и L3, а на выходы силовой цепи T1 и T3 запитать приборы для освещения, то организовывается простая схема, чтобы осветить помещение или пространство от АКБ. Данная схема является одним из возможных примеров использования МП в бытовых нуждах.

Для подпитки электродвигателя магнитные пускатели используются гораздо чаще. Для организации этого процесса следует подать напряжение от сети 220 В на выходы L1 и L3. Нагрузка снимается с контактов T1 и T3 напряжения того же номинала.

Данные схемы не оборудованы пусковым механизмом, т.е. при организации кнопок не используется. Для прекращения работы подключенного оборудования через МП, необходимо отключать от сети вилку. При организации автоматического выключателя перед магнитным пускателем, можно контролировать время подачи тока без необходимости полного отсоединения от сети. Усовершенствовать схему допустимо парой кнопок: «Стоп» и «Пуск».

Схема с кнопками «Пуск» и «Стоп»

Добавление в схему управляющих кнопок изменяет только сигнальную цепь, не влияя на силовую. Общая конструкция схемы потерпит после таких манипуляций незначительные изменения. Располагаться управляющие элементы могут в разных корпусах или одном. Одноблочная система носит название «кнопочного поста». Для каждой кнопки предусмотрено по паре выходов и входов. Контакты на кнопке «Стоп» — нормально замкнутые, на «Пуск» — нормально разомкнутые. Это позволяет организовывать подачу питания в результате нажатия на вторую и обрывать цепь при инициации второй.

Перед МП данные кнопки встраиваются последовательно. В первую очередь необходимо установить «Пуск», что обеспечивает работу схемы только в результате нажатия первой управляющей кнопки до момента ее удерживания. При отпускании включателя обрывается подача питания, что может не требовать организацию дополнительной прерывающей кнопки.

Суть обустройства кнопочного поста заключается в необходимости организации только нажатия на «Пуск» без необходимости последующего удерживания. Для организации этого вводится шунтирующая пусковую кнопку катушка, которая ставится на самоподпитку, организовывая цепь самоподхвата. Реализация этого алгоритма производится с помощью замыкания в МП вспомогательных контактов. Для их подключения используется отдельная кнопка, а сам момент включения должен быть одновременно с кнопкой «Пуск».

После нажатия на «Пуск» пропускается через вспомогательные контакты питания, замыкая сигнальную цепь. Необходимость удерживания пусковой кнопки отпадает, зато требуется для остановки нажатие соответствующего выключателя «Стоп», что инициирует возврат схемы в нормальное состояние.

Подключение к трехфазной сети через контактор с катушкой на 220 В

Трехфазное питание может подключаться через стандартный МП, который работает от сети с напряжением 220 В. Данную схему допустимо применять для коммутации в работе с асинхронными двигателями. Цепь управления не изменяется, на входные контакты A1 и A2 подается «ноль» или одна из фаз. Через кнопки «Стоп» и «Пуск» пропускается фазный провод, а для выходных нормально разомкнутых контактов оборудуется перемычка.

Для силовой цепи будут вноситься определенные незначительные поправки. Для трех фаз используются соответствующие входы L1, L2, L3, где с выходов T1, T2, T3 выводится трехфазная нагрузка. Для предотвращения перегрева подключаемого мотора в сеть встраивается тепловое реле, которое срабатывает при определенной температуре, размыкая цепь. Этот элемент устанавливается перед двигателем.

Производится контроль температуры на двух фазах, которые отличаются наибольшей нагрузкой. Если температура на любой из этих фаз достигает критического значения, выполняется автоматическое отключение. Ее часто используют на практике, отмечая высокую надежность.

Схема подключения двигателя с реверсным ходом

Некоторые устройства работают с двигателями, которые способны вращаться в обоих направлениях. Если перебросить фазы на соответствующих контактах, то легко добиться такого эффекта от любого моторного устройства. Организация этого может производиться с помощью добавления в кнопочный пост, кроме кнопок «Пуск» и «Стоп», еще одной — «Назад».

Схема МП для реверса организовывается на паре одинаковых устройств. Лучше подобрать пару, оснащенную нормально замкнутыми контактами. Эти детали подключаются параллельно друг к другу, при организации обратного хода мотора в результате переключения на одном из МП сменятся местами фазы. Нагрузка подается на выходы обоих устройств.

Организация сигнальных цепей более сложная. Для обоих приборов используется общая кнопка «Стоп» с последующим расположением элемента управления «Пуск». Подключение последней выполняется к выходу одного из МП, а первой — к выходу второго. Для каждого элемента управления организовываются для самоподхвата цепи шунтирования, что обеспечивает автономную работу прибора после нажатия на «Пуск» без необходимости последующего удерживания. Организация данного принципа достигается через установку на каждом МП перемычки на нормально разомкнутых контактах.

Устанавливается электрическая блокировка для предотвращения подачи питания сразу на обе управляющие кнопки. Это достигается подачей питания после кнопки «Пуск» или «Вперед» на контакты другого МП. Подключение второго контактора аналогичное, используя в первом пускателе его нормально замкнутые контакты.

Читайте также:  Технология шпаклевания осб плит

При отсутствии нормально замкнутых контактов в МП, установив приставку можно их добавить в устройство. При такой установке работа контактов приставки выполняется одновременно с другими за счет соединения с основным блоком. Иными словами, разомкнуть нормально замкнутый контакт после включения кнопки «Пуск» или «Вперед» невозможно, что предотвращает обратный ход. Для смены направления нажимается кнопка «Стоп», а только после этого задействуется другая — «Назад». Любое переключение должно выполняться через кнопку «Стоп».

Заключение

Магнитный пускатель — это очень полезное устройство для любого электрика. Прежде всего, с его помощью легко работать с асинхронным двигателем. При использовании катушки на 24 В или 12 В, питая от обычной АКБ при соблюдении соответствующих мер безопасности, получается даже запустить оборудование, рассчитанное на большие токи, например, с нагрузкой в 380 В.

Для работы с магнитным пускателем при составлении схемы важно учитывать особенности прибора и внимательно следить за характеристиками, которые указываются производителем. На выходы категорически запрещается подавать ток большего значения по напряжению или силе, чем указано в маркировке.

Схема подключения магнитного пускателя

Магнитные пускатели, а также контакторы, предназначаются для управления работой электродвигателей и других электрических устройств. Они рассчитаны на частое включение/выключение подобных устройств. Могут работать, как в однофазных, так и в 3-х фазных цепях переменного тока, а также в цепях постоянного тока.

Чем отличаются пускатели от контакторов

Предназначение этих видов устройств практически одинаковое, но разница все же имеется. Принцип работы этих устройств также одинаковый, поскольку их работа основана на принципе работы электрического магнита. Рассчитаны они для работы в цепях постоянного тока, с напряжением до 440V, а также в цепях переменного тока с напряжением до 600 V. Те и другие имеют:

  • Рабочие (силовые) контакты, для управления работой нагрузки.
  • Вспомогательные (управляющие) контакты, обеспечивающие функционирование сигнальных устройств.

Казалось бы, разницы нет, но она есть и достаточно существенная. Пускатели выпускаются для работы на малые токи до 10А, а вот контакторы предназначены для коммутации электрических цепей с большими токами, которые составляют сотни ампер. В связи с этим, их конструкция может отличаться из-за наличия дугогасительных камер.

Внешний вид не всегда так сильно отличается, но бывает и так

Кроме этого, пускатели выпускаются в корпусах из прочной пластмассы, а контакторы корпусов не имеют (в большинстве случаев), поэтому их установка требует защищенных мест, вроде боксов, вход в которые не возможен для посторонних лиц, кроме обслуживающего персонала. Кроме этого, контакторы должны быть защищены от влаги, пыли и грязи.

Пускатели в основном предназначаются для включения/отключения асинхронных 3-х фазных электродвигателей. В связи с этим данные устройства оборудованы 3 парами рабочих контактов, а также вспомогательными контактами, которые обеспечивают подачу питания на пускатель в рабочем режиме. Подобные функциональные возможности достаточно универсальные, поэтому пускатели используются для управления работой различных устройств, находящихся на значительном удалении.

Поскольку их принцип работы практически не отличается, то зачастую пускатели называют «малогабаритными контакторами». В основном это можно встретить в прайс-листах, хотя ранее четко разграничивались контакторы и пускатели. Как правило, даже электрики и те больше работали с пускателями.

Принцип работы и устройство

Очень важно понять, на чем основан принцип работы пускателей, а также как они устроены, чтобы лучше понимать схему подключения.

Основу конструкции представляет электрический магнит, который, в свою очередь, состоит из подвижной и неподвижной части. Магнитопровод отличается «Ш» — образной формой, при этом он как бы разрезан по середине и установлен «ногами» друг против друга.

Устройство магнитного пускателя

Как правило, нижняя часть является неподвижной и надежно закреплена на корпусе. Верхняя часть является подвижной и установлена на пружинах, которые автоматически отключают пускатель, если на катушке отсутствует рабочее напряжение. Следует отметить, что выпускаются пускатели на различное рабочее напряжение, от 12 до 380 вольт. Катушки легко меняются, поэтому пускатели достаточно ремонтопригодные и наиболее слабым звеном является именно катушка. Кроме этого, у пускателя имеются также подвижные и неподвижные контакты, как силовые, так и управляющие. Подвижные контакты располагаются на подвижной части магнитного пускателя.

Когда катушка обесточена, подвижные контакты находятся в разомкнутом состоянии за счет действия пружины. Когда нажимается кнопка «Пуск» на катушке появляется напряжение. В результате подвижная часть сердечника притягивается, а вместе с ней и подвижные контакты. Соединяясь с неподвижными контактами, образуется электрическая цепь, в результате чего на управляющем устройстве (электродвигателе) появляется рабочее напряжение: двигатель запускается. Это можно увидеть на картинке ниже.

Так выглядит в разобранном виде

Когда нажимается кнопка «Стоп», напряжение на катушке исчезает и верхняя, подвижная часть, за счет действия пружины, возвращается в исходное состояние. Контакты размыкаются, электрическая цепь пропадает, как и напряжение на электродвигателе: электрический двигатель останавливается. Электромагнит срабатывает, как от постоянного, так и от переменного напряжения, главное, чтобы катушка была рассчитана на рабочее напряжение.

Бывают пускатели с нормально замкнутыми и нормально разомкнутыми контактами, при этом последние наиболее распространенные и наиболее востребованные.

Катушка на 220 вольт: схемы подключения

Для управления работой магнитного пускателя используется всего две кнопки – кнопка «Пуск» и кнопка «Стоп». Их исполнение может быть различным: в едином корпусе или в отдельных корпусах.

Кнопки могут быть в одном корпусе или в разных

У кнопок, выпускаемых в отдельных корпусах, имеется всего по 2 контакта, а у кнопок, выпускаемых в одном корпусе – по 2 пары контактов. Кроме контактов, может присутствовать клемма для подключения заземления, хотя современные кнопки выпускаются в защищенных корпусах, которые не проводят электрического тока. Выпускаются также кнопочные посты в металлическом корпусе для промышленных нужд, которые отличаются высокой ударопрочностью. Как правило, они заземляются.

Подключение к сети 220 V

Подключение магнитного пускателя к сети 220 V наиболее простое, поэтому имеет смысл начать ознакомление именно с этих схем, которых может быть несколько.

Напряжение 220 V подается непосредственно на катушку магнитного пускателя, которые обозначены, как А1 и А2 и, которые располагаются в верхней части корпуса, что видно из фото.

Подключение контактора с катушкой на 220 В

Когда к этим контактам подключается обычная вилка на 220 V с проводом, устройство начнет работать после того, как вилка будет включена в розетку 220 V.

С помощью силовых контактов допустимо включать/отключать электрическую цепь на любое напряжение, лишь бы оно не превышало допустимые параметры, которые указываются в паспорте изделия. Например, на контакты можно подать напряжение аккумулятора (12 V), с помощью которого будет управляться нагрузка с рабочим напряжением 12 V.

Читайте также:  Схема плетения бисером изящного браслета на руку

Следует отметить, что неважно, на какие контакты подается управляющее однофазное напряжение, в виде «нуля» и «фазы». В данном случае, провода с контактов А1 и А2 можно поменять местами, что никак не повлияет на работу всего устройства.

Вполне естественно, что подобная схема включения используется крайне редко, поскольку требует прямой подачи напряжения на катушку магнитного пускателя. При этом существует масса вариантов включения, с применением реле времени или сумеречного датчика, подключив к силовым контактам например, уличное освещение. Главное, чтобы «фаза» и «ноль» находились рядом.

Использование кнопок «Пуск» и «Стоп»

В основном, магнитные пускатели участвуют в процессе работы электродвигателей. Без наличия кнопок «Пуск» и «Стоп» такая работа связана с рядом трудностей. В первую очередь это связано с особенностями работы электродвигателей, которые зачастую находятся на значительном удалении. Кнопки включаются в цепь катушки последовательно, как на рисунке ниже.

Схема включения магнитного пускателя с кнопками

Подобный способ характеризуется тем, что магнитный пускатель окажется в рабочем состоянии до тех пор, пока будет нажата кнопка «Пуск», что очень неудобно. В связи с этим, в схему включаются дополнительные (БК) контакты магнитного пускателя, которые дублируют работу кнопки «Пуск». При включении магнитного пускателя они замыкаются, поэтому после отпускания кнопки «Пуск» цепь сохраняет свою работоспособность. Они обозначены на схеме, как NO (13) и NO (14).

Схема подключения магнитного пускателя с катушкой на 220 В и цепью самоподхвата

Отключить работающее оборудование можно только с помощью кнопки «Стоп», которая разрывает электрическую цепь питания магнитного пускателя и всей схемы. Если в схеме предусмотрена другая защита, например, тепловая, то в случае ее срабатывания схема также окажется не работоспособной.

Питание для двигателя берется с контактов Т, а подается питания на контакты магнитного пускателя, под обозначением L.

В этом видео подробно рассказывается и показывается, в какой последовательности подключаются все провода. В данном примере использована кнопка (кнопочный пост), выполненная в одном корпусе. В качестве нагрузки можно подключить измерительный прибор, обычную лампу накаливания, бытовой прибор и т.д., работающие от сети 220 V.

Как выбрать циркуляционный насос для системы отопления

Принудительное движение теплоносителя в системе водяного отопления обеспечивает циркуляционный насос, способный перекачивать жидкость температурой 110…115 °С. В частных домах и квартирах с индивидуальными источниками тепла применяются малошумные аппараты бытовой серии с муфтовым присоединением, оснащенные «мокрым» ротором (якорь двигателя омывается и охлаждается протекающей водой).

Если вы решили самостоятельно подобрать насос для отопления, учтите 3 основных критерия:

  1. Технические характеристики – производительность, рабочее давление.
  2. Присоединительные и габаритные размеры.
  3. Цена изделия, популярность бренда.

Рассмотрим по пунктам, как правильно выбрать циркуляционный насос для радиаторной системы, теплых полов и первичного котлового контура.

  • 1 Самые «ходовые» модели насосных агрегатов
  • 2 Способы подбора насоса
  • 3 Расчет характеристик насоса
    • 3.1 Отопительная схема с батареями
    • 3.2 Петли теплых полов
    • 3.3 Котловой контур
  • 4 Выбор по размерам
  • 5 Производители и цены
  • 6 Заключительный вывод

Самые «ходовые» модели насосных агрегатов

Производители предлагают широкий выбор оборудования разной мощности, предназначенного для перекачки жидких сред с различными параметрами. Но нас интересуют только проточные модели, работающие в сетях домашнего отопления и горячего водоснабжения.

Как отличить циркуляционные агрегаты от центробежных и других видов насосов:

  • по форме – электрический мотор и крыльчатка установлены в одном корпусе, патрубки выходят по бокам нижней части (не посередине);
  • по наличию «мокрого» ротора, значительно снижающего шум вращения крыльчатки;
  • 2 типоразмера монтажной длиной 130 и 180 мм;
  • условный проход патрубков — 15, 20, 25 и 32 мм, присоединение — муфтовое (резьбовое);
  • паспортное давление – 0.4, 0.6 и 0.8 Бар.

Указанные параметры легко выяснить по маркировке изделия. Пример: цифры в названии Wilo Star-RS 15/4 обозначают внутренний диаметр соединительных патрубков 15 мм (Ду 15) и напор 4 м водного столба (0.4 Бар). Пример второй: аппарат Grundfos ALPHA2 25-60 подключается к трубам Ду 25 и развивает давление 0.6 Бар (6 метров).

Справка. Обычно производители выпускают расширенные линейки изделий. Немецкий бренд Wilo предлагает циркуляционные нагнетатели, располагающие напором 2, 4, 6, 7 и 8 м. вод. ст. Но «ходовыми» моделями все равно остаются «четверки» и «шестерки», реже – «восьмерки».

Конечно, существуют и более мощные насосы, чей напор достигает 1…10 Бар, но в частных жилищах таковые не применяются. Маленькие агрегаты длиной 130 мм с патрубками ½ и ¾ дюйма обычно ставятся внутри котлов, большие (18 см, 1 и 1 ¼») – врезаются в отопительные магистрали.

Способы подбора насоса

Самый правильный путь – сделать полноценный гидравлический расчет и точно определить основные параметры насоса – развиваемый напор и производительность. Именно так проектируется централизованное теплоснабжение многоквартирных домов и промышленных зданий.

Инженерной расчетной методикой владеют далеко не все мастера, занимающиеся монтажом автономных водяных систем, что уж говорить о рядовых домовладельцах. Как можно подобрать циркуляционный насос для отопления более простым способом:

  1. В случае замены старого изношенного агрегата приобретается новый с аналогичными параметрами. На первый план выходит цена и качество изделия.
  2. Заказать проект домашней отопительной системы инженеру–теплотехнику. Ниже мы поясним преимущества данного варианта.
  3. Самому рассчитать потребный напор насоса по упрощенной методике.
  4. Поверить многолетней практике наших экспертов и купить аппарат, руководствуясь их советами.

Котельная, сделанная нашим экспертом Владимиром Сухоруковым. Удобный доступ есть ко всему оборудованию, в том числе к насосам

Рекомендации экспертов. В загородных домах и квартирах площадью до 250 м² вполне достаточно бытового насоса, развивающего давление 4 м водного столба или 0.4 Бар. На квадратуру 250…500 м² лучше купить более мощный агрегат с напором 6 м (0.6 Бар), свыше 500 м² – 8 м. вод. ст.

Заказ инженерных расчетов и разработки схемы стоит денег, но окупится с лихвой. Когда вы монтируете отопление самостоятельно либо нанимаете работников, комплектующие и оборудование приобретается с приличным запасом – на всякий случай. Толковый проектировщик четко обоснует, почему нужно поставить насос небольшой мощности и трубу меньшего диаметра. В результате выйдет экономия на материалах, а в дальнейшем — затратах на электричество.

Разновидности насосов, применяемых в схемах автономного теплоснабжения

Читайте также:  Фронтон – где он, зачем нужен?

Если вы доверяете только цифрам либо захотите проверить монтажников, выбирайте насос отопления по собственным вычислениям, пользуясь приведенной ниже методикой. Не забудьте сверить расчетные характеристики агрегата с рекомендациями экспертов – результат наверняка выйдет аналогичным.

Расчет характеристик насоса

Отопление работает эффективно, когда все батареи или греющие напольные контуры получают необходимое количество тепла. То есть, насосная установка должна обеспечивать требуемый расход теплоносителя на каждом участке системы, преодолевая гидравлическое сопротивление труб, фитингов и арматуры.

Перед тем как выбрать насос, нужно рассчитать его производительность по формуле:

  • G – массовый расход теплоносителя, кг/ч;
  • Q – общая нагрузка на отопление, Вт;
  • Δt – разность между температурой воды в подающей и обратной линии, при расчетах обычно принимается равной 20 °С.

Справка. Поскольку плотность воды мало изменяется при нагреве в пределах 100 градусов, в упрощенных вычислениях массовый расход принимается равным объемному. Пример: G = 300 кг/ч = 300 литров в час.

Тепловую нагрузку можно высчитать скрупулезно, пользуясь методикой СНиП. Здесь мы не станем усложнять задачу и просто возьмем количество теплоты по площади.

Например, на обогрев двухэтажного дома квадратурой 200 м², расположенного в средней полосе, понадобится 22 кВт теплоты. Отсюда несложно посчитать расход теплоносителя и требуемую производительность насоса: G = 0.86 х 22000 / 20 = 946 кг/ч = 0.95 т/ч = 0.95 м³/ч.

Сразу предлагается выяснить сечение и диаметр основной магистрали, идущей от котла, куда планируется установить насос:

  • F – площадь поперечника трубы, м²;
  • ʋ — скорость движения воды, принимается 0.5…1 м/с.

Чем ниже скорость течения воды, тем меньше сопротивление трению о стенки труб, арматуры и фитингов.

Берем значение 0.6 м/с и определяем сечение магистрали: F = 0.95 / 3600 х 0.6 = 0.00044 м². Дальше через формулу площади круга рассчитываем диаметр прохода – 0.024 м или 24 мм. Соответственно, внутренний размер трубы и присоединительных штуцеров насоса равен 25 мм.

Выяснив необходимую производительность перекачивающего устройства, переходим к вычислению располагаемого давления. Расчеты проведем отдельно для радиаторной сети, напольного обогрева и котлового контура обвязки.

Отопительная схема с батареями

Задача насоса – продавить нужный объем теплоносителя по трубам от первого до последнего радиатора. Ему препятствует сила трения жидкости о стенки, сопротивление от сужения протока в регулировочных вентилях и поворотов на фитингах.

Чтобы узнать величину сопротивления, которое должен преодолеть циркуляционный агрегат, предлагаем воспользоваться упрощенной формулой:

  • H – искомый перепад давлений в метрах водного столба;
  • R – удельное сопротивление трению, считается в м. вод. ст. на 1 метр погонный трубопровода;
  • L – протяженность наиболее длинной ветви отопления, измеряется от источника тепла до последнего радиатора;
  • Z – коэффициент местных сопротивлений.

Замечание. Формула сильно упрощена, инженерный расчет гидравлики гораздо сложнее. Зато она позволяет правильно подобрать отопительный насос для бытовых условий. Мы проверили альтернативный вариант — онлайн-калькуляторы, размещенные на различных интернет-ресурсах. Получив разницу между результатами 30%, делаем вывод: лучше посчитать напор вручную.

Как производятся вычисления:

  1. Поскольку насос создает одинаковое давление на входе в каждую ветвь отопления, выбираем самую протяженную линию и определяем ее длину в метрах. Это показатель L в формуле. При двухтрубной системе учитываются обе линии – обратная и подающая.
  2. Удельное сопротивление R принимаем равным 150 Па/м или 0.015 м водного столба на 1 м. п. магистрали (для пластиковых труб).
  3. Если проток через батареи регулируется термостатическими клапанами, берем коэффициент Z = 2.2. Вариант второй: радиаторы оборудованы шаровыми кранами и балансировочными вентилями, тогда Z = 1.5.

Наибольшее сопротивление течению воды оказывают трехходовые клапаны и вентили с термоголовками

  • Рассчитываем потребное давление и выбираем подходящую модель нагнетателя.
  • Совет. Длина линии тупиковых и кольцевых схем считается одинаково – плюсуем протяженность подачи и обратки. Для однотрубной «ленинградки» берем общую длину кольца. Если на момент расчета схема отсутствует, протяженность определяется по внутренним габаритам дома: размер I этажа + высота потолка + ширина II этажа.

    Просчитаем давление по нашему примеру. Длина L по габаритам здания равна (10 + 3 + 10) х 2 = 52 м, Z = 2.2. Потребный напор составит 0.015 х 52 х 2.2 = 1.716 ≈ 1.7 м. Прибавим запас 1 м на неучтенные сопротивления самого котла и дополнительного оборудования, получаем 2.7 м водяного столба.

    На графике, прилагаемом к паспорту насоса, отмечаем линию производительности и напора, затем выбираем подходящую модель, в данном случае — марка Wilo Star-RS 25/4.

    Как видите, результаты расчетов не противоречат советам экспертов: насоса давлением 0.4 Бар вполне достаточно, чтобы заставить циркулировать воду по сети отопления двухэтажного дома площадью 200 квадратов. Для лучшего понимания предлагаем посмотреть ход расчетов на видео:

    Важный момент. В современных нагнетательных устройствах зачастую предусмотрено 3—7 режимов работы, а в инструкции нарисовано столько же графиков. Для расчета выбирайте характеристику, соответствующую средней скорости (вторая – третья).

    Петли теплых полов

    Обычно теплоноситель подается в напольные контуры отдельным насосом, работающим в паре с подмешивающим клапаном. При этом максимальная протяженность петли не превышает 100 метров, фасонные детали отсутствуют. Местные сопротивления – термостатический вентиль коллектора и смесительный трехходовой (или 2-ходовой) клапан.

    Для расчета вполне подходит предыдущий алгоритм:

    1. Выясняем количество контуров, максимальную длину трубы и общий расход теплоносителя через гребенку. Все вычисления по теплым полам мы подробно расписали в отдельной публикации.
    2. Берем самую длинную петлю и считаем по ней требуемое давление насосного агрегата, пользуясь приведенной выше формулой. Подставляем аналогичные значения R, L и Z.
    3. Подбираем насос для петель напольного обогрева по графику, представленному в паспорте изделия.

    Пример. Возьмем тот же двухэтажный дом с тепловой нагрузкой 22 кВт и расходом воды 0.95 м³/ч, максимальная длина петли – 80 м. Значение R принимаем 0.015, Z – 2.2, тогда напор H = 0.015 х 80 х 2.2 = 2.64 м. Сопротивление магистрали не учитываем, поскольку котел оснащен собственным насосом. Значит, окончательное давление коллекторного агрегата – минимум 2.64 м.

    Заметьте: увеличивая протяженность петель до 100 м, вы поднимаете планку давления насоса, что приведет к повышению расхода электроэнергии. Проверяем: H = 0.015 х 100 х 2.2 = 3.3 м. Рисуем на диаграмме соответствующую горизонтальную линию и выбираем любую модель, чей график размещен выше. Ближайший агрегат — Wilo Star-RS 25/6.

    Котловой контур

    Как известно, в схемах обвязки твердотопливных котлов предусматривается установка отдельного насоса, гоняющего воду по малому кольцу через трехходовой клапан либо буферную емкость. Идентичный принцип применяется в системе первичных/вторичных колец, где к основному контуру подключены линии радиаторного отопления, теплых полов и бойлера ГВС.

    Насос, качающий воду по основному кольцу, практически не испытывает сопротивления – магистраль короткая, минимум фитингов и арматуры. Поэтому напор основного агрегата зачастую меньше, чем давление вторичных нагнетателей, отправляющих теплоноситель к приборам отопления.

    Важный нюанс. Главное — обеспечить нужный расход воды в основном контуре, соответствующий мощности теплогенератора. Для выбора модели насоса двигайтесь тем же путем – узнайте требуемый объем теплоносителя по производительности котла и посчитайте располагаемый напор. Подробная инструкция представлена на видео:

    Выбор по размерам

    Вы наверняка заметили — в ассортименте фирм есть агрегаты с одинаковыми характеристиками, но разными габаритами и размерами патрубков. Как выбирать внешние параметры насоса:

    1. Для монтажа на трубопроводах, байпасах и смесительных узлах напольного обогрева используются стандартные нагнетатели длиной 180 мм. «Коротыши» 130 мм ставятся внутри теплогенераторов либо на магистралях в сильно ограниченном пространстве.
    2. Диаметр присоединительных патрубков подбирается под сечение основного трубопровода. Увеличение типоразмера допустимо, уменьшение – категорически не рекомендуется. То есть, на трубопровод Ду 25 можно ставить агрегат со штуцерами 32 мм.
    3. Насосы с патрубками Ø32 мм применяются на первичных кольцах и котловых контурах, а также в модернизируемых самотечных системах.

    Рабочие характеристики насосов не зависят от их монтажной длины – 130 или 180 мм

    Примечание. Размеры готовых байпасов, продающихся в магазинах, подогнаны под стандартный насос монтажной длиной 18 см.

    Число скоростей нагнетателя особой роли не играет. В домашних условиях вполне достаточно 3 режимов, оптимальная скорость – вторая. Воздух из агрегатов стравливается через боковой винт, поэтому не стоит покупать изделия с отдельным воздухоотводчиком.

    Производители и цены

    Невзирая на широкий ассортимент насосов в магазинах, по-настоящему качественный продукт выбрать нелегко. Рынок наводнен китайским товаром и подделками известных брендов. Для начала перечислим популярных на территории СНГ производителей:

    1. Высшая ценовая категория – Grundfos (Дания), Wilo (Германия). Цены на оригинальных «немцев» стартуют от 75 евро, «Грюндфос» серии UPS – 65 евро.
    2. Средняя категория – DAB, Aquario (Италия), Sprut (качественный Китай). Стоимость агрегатов различных моделей колеблется в пределах 40—100 евро.
    3. Прочие дешевые насосы (Oasis, Neoclima, «Вихрь», «Калибр» и так далее до бесконечности). Цена – от 20 евро за штуку.

    Новейшая разработка – «умный» насос Grundfos Alpfa-3, передающий информацию на смартфон и помогающий балансировать систему

    Замечание. Вполне вероятно, что мы не включили некоторые весьма достойные изделия в высшую либо среднюю ценовую категорию. Здесь указаны самые распространенные бренды.

    Чем отличаются недорогие и контрафактные насосы от качественных нагнетателей:

    • срок службы – 1…3 отопительных сезона;
    • номер изделия нанесен только на наклейку, корпус агрегата чистый;
    • перекачивающие устройства из одной партии часто идут с одинаковыми номерами;
    • по весу подделка заметно отличается от оригинала (она легче);
    • агрегат низкого качества начинает шуметь и пищать, отработав 1 сезон в закрытой системе отопления, сильно греется корпус.

    Иногда поддельные насосы отопления неотличимы от оригинала, только цена вдвое ниже. Секрет – в алюминиевой обмотке, удешевляющей себестоимость продукта. Как проверить: найдите на официальном сайте компании массу оригинальной модели и сравните с рыночным экземпляром. Скорее всего, осведомленный продавец откажется взвешивать контрафактный аппарат либо сразу признает неизвестное происхождение товара.

    Заключительный вывод

    Выбирая циркуляционный насос для отопления дома, важно не ошибиться с характеристиками и не гнаться за дешевизной. Недостаточный напор приведет к слабому прогреву дальних батарей, чрезмерный – к появлению шума в радиаторах и быстрому износу нагнетательного агрегата. Последний совет по выбору производителя: если хотите сэкономить, лучше отыщите брендовый оригинал б/у, он прослужит дольше нового дешевого «китайца».

    Выбор циркуляционного насоса для системы отопления

    Системы отопления делятся на системы с естественной (гравитационной) и принудительной циркуляцией. В системах с принудительной циркуляцией обязательна установка циркуляционного насоса. Его задача — обеспечить движение теплоносителя по системе с заданной скоростью. А чтобы он со своей задачей справлялся, на до правильно выбрать циркуляционный насос.

    Назначение и виды

    Как уже говорили, основная задача циркуляционного насоса обеспечить требуемую скорость движения теплоносителя по трубам. Для систем с принудительной циркуляцией только при таких условиях будет достигнута проектная мощность. Во время работы циркуляционника в системе немного возрастает давление, но это не его задача. Это,скорее, побочный эффект. Для повышения давления в системе есть специальные повысительные насосы.

    Более популярны циркуляционные водяные насосы с мокрым ротором

    Есть два типа циркуляционных насосов: с сухим и мокрым ротором. Они отличаются по конструкции, но выполняют одни задачи. Чтобы выбрать циркуляционный насос какого типа вы хотите установить, надо знать их достоинства и недостатки.

    С сухим ротором

    Получил свое название в связи с особенностями конструкции. В теплоноситель погружена только крыльчатка, ротор находится в герметичном корпусе, его от жидкости отделяет несколько уплотнительных колец.

    Устройство циркуляционного насоса с сухим ротором — во воде только крыльчатка

    Данные аппараты имеют следующие свойства:

    • Имеют высокий КПД — порядка 80%. И это основной их плюс.
    • Требуют регулярного обслуживания. В процессе эксплуатации твердые частицы, содержащиеся в теплоносителе попадают на уплотнительные кольца, нарушая герметичность. Чтобы предотвратить разгерметизацию и необходимо обслуживание.
    • Срок эксплуатации порядка 3 лет.
    • При работе издают высокий уровень шумов.

    Такой набор характеристик не очень подходит для установки в системах отопления частных домов. Основной их плюс — высокий КПД, а значит, меньший расход электроэнергии. Потому в больших сетях циркуляционные насосы с сухим ротором более экономичны, и там в основном и используются.

    С мокрым ротором

    Как понятно из названия, в оборудовании данного типа в жидкости находится и крыльчатка и ротор. Электрическая часть, включая стартер, заключена в металлический герметичный стакан.

    Этот тип оборудования имеет следующие свойства:

    • КПД порядка 50%. Не самый лучший показатель, но для небольших частных систем отопления это некритично.
    • Обслуживания не требуют.
    • Срок эксплуатации — 5-10 лет в зависимости от марки, режима работы и состояния теплоносителя.
    • Во время работы почти не слышны.

    Исходя из приведенных выше свойств, выбрать циркуляционный насос по типу несложно: большинство останавливается на устройствах с мокрым ротором, так как они больше подходят для работы в условиях квартиры или частного дома.

    Как выбрать циркуляционный насос

    Каждый циркуляционный насос имеет набор технических характеристик. Они подбираются под параметры каждой системы индивидуально.

    Подбираем технические характеристики

    Начнем с подбора технических характеристик. Для профессионального расчета есть куча формул, но для подбора насоса для системы отопления частного дома или квартиры можно обойтись усредненными нормами:

    • Производительность насоса принимают равной мощности установленного котла отопления. То есть, если котел стоит на 35 кВт, то насос подбирают с производительностью 35 л/мин.
    • Далее надо рассчитать требуемый напор (высоту подъема). В среднем считается, что для 10 метров трубопровода должен быть напор насоса 0,6 м. Чтобы определить, какой напор циркуляционного насоса нужен для системы, надо ее общую длину поделить на 10 и умножить на 0,6 м/с. Например, если общая длинна системы отопления, например, 80 м, требуемый напор будет: 0,6 м * 8 = 4,8 м. То есть в технических характеристиках напор не должен быть меньше.

    Подобрать циркуляционный насос для системы отопления можно самостоятельно

  • Лучше, если скорость движения теплоносителя в системе может изменяться. Это даст возможность подстраивать теплоотдачу в зависимости от температуры на улице: чем выше скорость, тем больше тепла переносится. Потому лучше выбирать модели, которые могут работать на нескольких скоростях. Но в любом случае, скорость движения теплоносителя не должна превышать 1,6 м/с. Это — порог бесшумной работы системы отопления, если разогнать теплоноситель быстрее, появится шум.
  • Электрическая мощность циркуляционного насос подбирается в зависимости от диаметра труб. Чем меньше сечение трубы, тем большее гидравлическое сопротивление она имеет. То есть, для систем, разведенных трубами малого диаметра требуются более мощные насосы.
  • Выбрать циркуляционный насос для отопления следуя этим правилам несложно. Расчеты элементарные. Но надо сказать, что данные цифры — среднестатистические. Если ваш дом в каком-то пункте сильно отличается от «средних показателей», надо делать поправки либо в сторону увеличения, либо в сторону уменьшения технических характеристик. Например, вы хорошо утеплили дом, мощность купленного ранее котла оказалась избыточной. В этом случае имеет смысл брать помпу с меньшей производительностью. В обратной ситуации — в доме в сильные холода зябко — можно поставить более производительный циркуляционник. Он временно решит проблему (в дальнейшем надо или утеплять или менять котел).

    Подбор модели

    При выборе конкретной модели обратите внимание на график с напорной характеристикой насоса. На графике надо найти точку, в которой пересекаются значения напора и производительности. Она должна располагаться в средней трети кривой. Если она не попадает на какую-то из кривых (их обычно несколько, характеризующих разные модели), берут ту модель, график которой оказывается ближе. Если точка стоит посередине, берут менее производительную (ту, что расположена ниже).

    Рабочая точка должна находится в средней части графика

    На что еще обратить внимание

    В технических характеристиках циркуляционных насосов есть еще несколько позиций, на которые стоит обратить внимание. Первый — допустимая температура перекачиваемой среды. То есть, температура теплоносителя. В качественных изделиях этот показатель находится в диапазоне от +110°C до +130°C. В дешевых может быть ниже — до 90°C (а по факту 70-80°C). Если система у вас рассчитана как низкотемпературная, это нестрашно, но если стоит твердотопливный котел — температура до которой может быть разогрет теплоноситель очень важна.

    Выбрать циркуляционный насос надо сначала по характеристикам

    Стоит обратить внимание и на максимальное давление, при котором может работать насос. В системе отопления частного дома оно редко бывает выше 3-4 атм (это для двухэтажного дома), а в норме составляет 1,5-2 атм. Но все равно, обращайте внимание на данный показатель.

    На что еще обратить внимание — на материал, из которого сделан корпус. Оптимальный — чугунный, более дешевый — из специального термостойкого пластика.

    Тип и размер соединения. Циркуляционный насос может иметь резьбу или фланцевые соединения. Резьба бывает наружной и внутренней — под нее подбираются соответствующие переходники. Подсоединительные размеры могут быть: G1, G2, G3/4.

    Также стоит обратить внимание, на наличие защиты. Может быть защита от сухого хода. В циркуляционных насосах с мокрым ротором она очень желательна, так как охлаждение мотора происходит за счет перемещаемой среды. Если воды, нет, мотор перегревается и выходит из строя.

    Еще один тип защиты — защита от перегрева. Если мотор нагревается до критического значения, теромореле отключает питание, насос останавливается. Две эти функции продлят срок эксплуатации оборудования.

    Производители и цены

    При выборе производителей циркуляционного насоса подход тот же, что при подборе любой дугой техники. Если есть возможность, лучше брать оборудование европейских производителей, которые на рыке уже давно. Самыми надежными в данном секторе считаются циркуляционные насосы Willo (Вилло), Grundfos (Грундфос), DAB (ДАБ). Есть и другие неплохие марки, но по ним надо читать отзывы.

    Название Производительность Напор Количество скоростей Подсоединительные размеры Максимальное рабочее давление Мощность Материал корпуса Цена
    Grundfos UPS 25-80 130 л/мин 8 м 3 G 1 1/2″ 10 бар 170 Вт Чугун 15476 руб
    Калибр НЦ-15/6 40 л/мин 6 м 3 внешняя резьба G1 6 атм 90 Вт Чугун 2350 руб
    БЕЛАМОС BRS25/4G 48 л/мин 4,5 м 3 внешняя резьба G1 10 атм 72 Вт Чугун 2809 руб
    Джилекс Циркуль 25/80 280 133,3 л/мин 8,5 м 3 внешняя резьба G1 6 атм 220 Вт Чугун 6300 руб
    Elitech НП 1216/9Э 23 л/мин 9 м 1 внешняя резьба G 3/4 10 атм 105 Вт Чугун 4800 руб
    Marina-Speroni SCR 25/40-180 S 50 л/мин 4 м 1 внешняя резьба G1 10 атм 60 Вт Чугун 5223 руб
    Grundfos UPA 15-90 25 л/мин 8 м 1 внешняя резьба G 3/4 6 атм 120 Вт Чугун 6950 руб
    Wilo Star-RS 15/2-130 41,6 л/мин 2,6 м 3 внутренняя резьба G1 45 Вт Чугун 5386 руб

    Обратите внимание, что все технические характеристики представлены для перемещения воды. Если теплоноситель в системе — незамерзающая жидкость, необходим вносить корректировки. За актуальными для этого типа теплоносителей данными придется обращаться к производителю. В других источниках подобные характеристики найти не удалось.

    Циркуляционный насос для котла отопления: выбор и самостоятельный монтаж устройства

    Равномерное распределение теплоносителя внутри трубопровода и радиаторов обеспечивается за счет использования насоса для котла отопления. Приспособление поддерживает нужное давление в системе, помогая жидкости преодолевать непростой путь. Монтаж циркуляционного насоса можно провести самостоятельно, если ознакомиться с инструкцией и техническим устройством прибора.

    Что такое циркуляционный насос

    Одним из необходимых элементов в системе горячего водоснабжения и отопления является циркуляционный насос. Это устройство выполняет нагнетающую и всасывающую функции, способствует активному перемещению жидкость внутри отопительной системы. Насос монтируется непосредственно в трубопровод. Предназначен для работы в замкнутом контуре.

    Основными элементами прибора являются:

    • корпус;
    • крыльчатка;
    • ротор;
    • вал двигателя;
    • клеммная коробка;
    • двигатель;
    • воздушный винт.

    Как только на ротор подается электрическая энергия, он начинает вращаться, передавая крыльчатке сигнал на движение. Это приводит к всасыванию жидкости с одной стороны устройства и выталкиванию с другой. Чтобы агрегаты было легче монтировать и обслуживать, производители выпускают различные модели по форме корпуса и габаритам.

    Цены на циркуляционные насосы для котлов отопления

    Для чего используется

    Благодаря циркуляционному насосу обогрев помещений осуществляется равномерно и быстро, поэтому сфера применения таких агрегатов обширная.

    Насосы устанавливают для таких целей:

    1. Улучшение качества работы системы с естественной циркуляцией.
    2. Принудительное движение теплоносителя при геотермальном отоплении. Тепловой насос работает по классическому циклу Карно: забирает глубоко внизу холодный теплоноситель и получает взамен нагретый до 50 градусов поток жидкости внутри отопительной системы. Летом геотермальное оборудование из нагревателя превращается в средство пассивного кондиционирования.
    3. Обеспечение циркуляции воды в системах горячего и холодного водоснабжения в частном доме.
    4. Повышение эффективности работы конструкции теплый водяной пол.
    5. Использование в системах кондиционирования с целью охлаждения.

    Виды насосов

    Все электронасосы имеют общий принцип работы, но отличаются конструкцией и эффективностью. Чтобы правильно выбрать устройство, необходимо знать, какие виды оборудования существуют, чем отличаются.

    Различают два вида циркуляционных агрегатов:

    1. С мокрым ротором. Такие устройства имеют модульную конструкцию, что упрощает их техническое обслуживание и ремонт. Ротор и крыльчатка находятся в рабочей среде, сухой остается только электрическая часть. У приборов невысокий уровень шума. Ступенчатый регулятор скорости позволяет контролировать расход электрической энергии. Преимущество агрегата заключается в длительном сроке эксплуатации при условии правильного монтажа. Недостаток прибора — чувствительность к качеству рабочей жидкости.
    2. С сухим ротором. Насос отличается типом конструкции. Ротор заключен в герметичный корпус, а крыльчатка погружена в теплоноситель. От проникновения жидкости двигатель защищен уплотнительными кольцами. Основной плюс агрегата — высокий коэффициент полезного действия и минимальные требования к качеству теплоносителя. Устройство создает высокий уровень шума.

    Судя по характеристикам, можно сделать вывод, что для частных домов и квартир больше подходят устройства с мокрым ротором.

    Преимущества котлов с насосом

    Электрический котел с циркуляционным насосом благодаря своей уникальной конструкции, может выполнять функции целого комплекса отопительных устройств.

    Повышенный спрос на такое оборудование обусловлен его преимуществами:

    1. Большой ассортимент моделей дает возможность выбрать котел для обогрева помещений любой площади. Пользователю не нужно подбирать насос отдельно.
    2. Устройство позволяет прогонять жидкость по всем контурам с оптимальной скоростью. Это помогает равномерно и быстро прогреть помещение.
    3. Коэффициент полезного действия — 90% и выше, что говорит о высокой эффективности моделей.
    4. Автоматизация процесса обеспечивает простую настройку и высокую безопасность котлов.
    5. Оборудование экологично, так как в процессе его работы не производится выброс вредных веществ.
    6. Простой монтаж отопительной системы.

    Производители выпускают котлы настенные, которые подходят для небольших квартир, а также напольные, способные обеспечить теплом помещение с большой площадью.

    Недостатки

    Котлы со встроенными циркуляционными насосами не лишены недостатков, знакомство с которыми позволит определиться, стоит ли устанавливать подобное оборудование.

    1. Электроэнергия обходится дороже, чем газ или твердое топливо.
    2. Бесперебойная работа котла напрямую зависит от напряжения в подающей сети.
    3. Необходимость установки качественной проводки в отапливаемом помещении.

    Недостатки использования котлов в основном связаны с необходимостью обеспечения их электрической энергией. Перед установкой необходимо рассчитать силу тока, чтобы выбрать кабель нужного сечения и автомат. Для снижения мощности самого котла на выходном контуре отопительной системы ставится аккумуляторная емкость.

    Виды устройств для котлов

    Врезанные в отопительный контур помпы усиливают циркуляцию теплоносителя в трубах. В зависимости от области применения они отличаются по конструкции и техническим параметрам.

    Устройства делятся на два типа: циркуляционные насосы для газового котла и питательные аппараты для паровых агрегатов. Главное — правильно подобрать прибор под конкретный трубопровод и характеристики котла.

    Циркуляционные

    Многие модели одно- и двухконтурных газовых котлов оснащены циркуляционными насосами, которые устанавливаются рядом с гидравлическим блоком. Для бытовых нужд идеальным вариантом являются однофазные помпы с мощностью до 100 Вт, обеспечивающие скорость прокачки жидкости до 2 м/с. Эти модели легко устанавливаются на пластиковые трубы и способны долго прослужить без ремонта, так как собираются из нержавеющих компонентов.

    Помпы в одноконтурных газовых котлах, как и в электрических, бывают «мокрыми» и «сухими». Они необходимы в тех случаях, когда в системе низкое давление газа. Агрегат помогает такому котлу развивать мощность до 80%.

    Питательные

    Промышленные установки, предназначенные для подачи теплоносителя в паровые котлы электрических станций или нефтеперерабатывающих предприятий, называются питательными насосами. Агрегаты, в зависимости от типа модели, перекачивают воду с температурой от 80 °С до 165 °С. Количество примесей в жидкости не должно превышать 0,2 %.

    Питательные агрегаты производятся нескольких типов и в различных конструктивных исполнениях. Эксплуатируются они в тяжелых условиях, поэтому многие оснащены устройством автоматического отключения. Каждый агрегат имеет обратный клапан — это защитная мера для предотвращения обратного вращения ротора или перегрева воды.

    Рабочая часть устройств изготавливается из стали, сплавов чугуна или цветных металлов.

    Как подобрать насос

    Чтобы правильно выбрать циркуляционный агрегат, необходимо знать его функциональные возможности. Ознакомиться с ними можно в технической документации, которую вместе с насосом предоставляет производитель. Стоит обращать внимание на материал, из которого изготовлен корпус циркулярного прибора и на присутствие защиты.

    1. Производительность. Эта величина максимального объема теплоносителя, которую может за один час времени прокачать приспособление. Единица измерения — м³/ч.
    2. Напор. Показатель измеряется в метрах и представляет собой максимальное значение гидравлического сопротивления.
    3. Скорость. Позволяет настраивать теплоотдачу в зависимости от температуры на улице. Лучше выбирать приборы, которые могут работать на различных скоростях.
    4. Мощность. Чем меньше диаметр труб отопительной системы, тем мощнее должен быть двигатель.
    5. Температура. До скольки градусов будет нагреваться жидкость в системе отопления.

    Куда устанавливать

    Среди специалистов существуют различные мнения по поводу установки агрегата в систему. Одни предлагают монтировать насос на подающем трубопроводе, другие — на обратном.

    В домашней системе температура редко поднимается выше 70 °С, а жидкость не нагревается больше, чем на 90 °С. Поэтому агрегат можно врезать как в подающем, так и в обратном трубопроводе, при этом разность статистических давлений жидкости между ними не существенная, но лучше остановиться на втором варианте. Если в отопительной системе две отдельные ветки, то имеет смысл на каждой поставить отдельное приспособление.

    Монтировать насос надо сразу после котла, до первого разветвления в контуре. Тогда можно будет задавать необходимый тепловой режим в каждой части дома.

    Принудительная циркуляция

    В домах с большой площадью в системе возможно образование воздушных пробок, что приводит к нарушению циркуляции, перегреву теплоносителя в котле и возникновению повреждений. Поэтому в обратную трубу перед вводом в теплообменник котла устанавливается насос, который осуществляет принудительную циркуляцию. Это позволяет поддерживать нужную скорость и давление жидкости.

    В теплоносителе часто содержатся механические примеси, которые способны повредить двигатель или привести к заклиниванию крыльчатки, поэтому перед приспособлением устанавливается сетчатый фильтр-грязевик. Установленные с обеих сторон прибора шаровые краны позволяют осуществить ремонт или замену агрегата без слива жидкости из системы.

    Естественная циркуляция

    Процесс получил свое название исходя из законов физики. Благодаря строго выдержанному наклону подающей и обратной труб нагретая жидкость поднимается в верхнюю точку системы, затем по мере остывания опускается вниз, возвращаясь в котел. При работе в таком режиме теплоотдача будет низкой, кроме того, возможно отключение электрической энергии, поэтому в систему врезают насос. Это дает высокую эффективность и надежность отопления.

    Дополнительно монтируют байпасную линию для помпы — перемычку, которая при отключенном котле делает систему работоспособной. В перемычке ставится шаровой отсечной кран. Он открывается, когда отключается электричество или прибор выходит из строя. Кран, ведущий к насосу, перекрывается, и система начинает работать по принципу самотека.

    Куда нельзя устанавливать циркуляционные агрегаты

    Не желательно устанавливать циркуляционные насосы на подающую магистраль. Бывают случаи, когда в верхней части котла скапливается воздух, устройство не может его втянуть, в результате образуется вакуум, что приводит к закипанию теплоносителя.

    Образующаяся пароводяная смесь начинает двигаться в систему. Насос останавливается, потому что он может перекачивать только воду. Если вовремя не принять меры, то возможен взрыв.

    Правила и нюансы монтажа

    Установку насоса желательно доверить мастеру. В технической документации производитель указывает правила монтажа, так что можно попробовать выполнить работу самостоятельно. Главное — придерживаться правил обращения с устройством.

    Чтобы не образовывались воздушные пробки, которые могут привести к поломке оборудования, важно правильно выбрать расположение ротора относительно горизонта. На корпусе устройства есть подсказка в виде стрелки, указывающей, в каком направлении должна двигаться жидкость в системе. Участок нужно выбирать в месте, удобном для эксплуатации агрегата.

    Схема монтажа

    Существует несколько схем подключения насоса к котлу. Нужный вариант выбирается исходя из типа системы и вида отопительного оборудования. Во всех схемах прибор монтируется так, чтобы его было комфортно обслуживать.

    1. Агрегат устанавливается на обратке непосредственно перед тепловым генератором.
    2. Помпу монтируют в начале контура после группы безопасности.
    3. Устройство с отсекающей арматурой ставиться на байпасе.
    4. Используется при подключении насоса к твердотопливному котлу. Устройство лучше закрепить на магистрали, которая идет из отопительной системы к теплогенератору.

    Установка циркуляционного приспособления на обратке.

    Как подключить к электропитанию

    Работает прибор от сети 220 В. Для подключение требуются три провода: фаза, ноль и заземление.

    Его можно подсоединить к электропитанию двумя способами:

    1. Напрямую кабелем или через клеммную колодку. Необходимо провести отдельную электрическую линию с автоматом защиты, и с помощью этого кабеля подключить устройство. Клеммы обычно располагаются под пластиковой крышкой. Ее нужно снять, открутив несколько болтов, найти три разъема. Они подписаны: пиктограммы N — нулевой провод, L — фаза, а «земля» имеет интернациональное обозначение.
    2. Через трехконтактную розетку и вилку. Следует сделать новую проводку. Осуществить монтаж наружной или внутренней розетки. Агрегату для подсоединения к сети понадобится силовой кабель с вилкой, оснащенной заземлением.

    Когда нужно ставить дополнительное оборудование

    От работоспособности насоса зависит функционирование всей отопительной системы. Чтобы предотвратить внезапное отключение агрегата, стоит дополнительно предусмотреть резервное питание. Для этого можно установить стабилизатор с подключенными аккумуляторами. Главное правильно подобрать и просчитать емкость приборов и следить, чтобы они не разряжались.

    Снизить затраты электроэнергии и увеличить срок службы прибора можно путем установки термостата, который измеряет температуру жидкости. Насос будет запускаться, если показатель достигнет требуемого уровня.

    Пошаговая инструкция по сборке и монтажу насоса

    После приобретения устройства и выбора места его установки необходимо провести сборку и монтаж. Предварительно необходимо по обе стороны помпы вмонтировать шаровые краны, перед агрегатом установить грязевик для задержки окалины, грязи, абразивных частиц. Верхнюю часть байпаса надо оснастить воздушным клапаном.

    Сборка и подключение насоса к котлу отопления проводятся в такой последовательности:

    1. Перед монтажом следует слить жидкость из системы. Для полноценной очистки нужно залить в нее теплоноситель и спустить, затем повторить эту процедуру еще пару раз.
    2. Осуществить установку насоса в систему.
    3. После монтажа все места соединений необходимо тщательно загерметизировать.
    4. Залить систему жидкостью. Удалить лишний воздух.
    5. Подключить устройство к электрической сети.

    Количество циркуляционных приборов, необходимых в системе, зависит от длины трубопровода.

    Стоимость насосов разных видов

    На рынке представлено много компаний, специализирующихся на производстве циркуляционных агрегатов. Потребителям рекомендуется покупать модели европейских производителей, пользующихся авторитетом. Спросом пользуется также продукция некоторых российских предприятий.

    Модель Страна-производитель Цена, руб.
    Прима UPS 25/60 180 Россия 1570
    Wester WCP 25-40G Россия 2127
    LRP 32-50/180 Китай 2598
    Hoffmann UPC 25-40 180 Германия 5256
    Yonos PICO 15/1-4 Германия 6051
    A 56/180 XM Италия 10953

    В продаже можно найти как бюджетные, так и дорогостоящие модели. Какой купить насос для котла отопления — это индивидуальное решение хозяина дома. Одни при выборе ориентируются на степень известности производителя, другие — на стоимость, третьи — на доступность сервиса. Как выбрать радиатор отопления изучайте по ссылке.

    Видео

    Посмотрите видео, где показана установка насоса в систему отопления.

    Евгений Афанасьев главный редактор

    Автор публикации 22.12.2018

    Понравилась статья?
    Сохраните, чтобы не потерять!

    Циркуляционный насос для отопления: подбор по инженерной схеме

    В данной статье будет рассмотрена наиболее распространенная и достаточно простая инструкция того, как подобрать циркуляционный насос для системы отопления.

    Характеристики насоса

    Во-первых, насос, который будет использоваться в системе отопления должен выдерживать повышенные температуры рабочего тела (в нашем случае это вода – 110° С).

    1. Рабочий напор (м).
    2. Рабочий расход (м 3 /час).

    Фото циркуляционного насоса Грундфос

    Мощность отопления для заданного помещения

    Делая подбор циркуляционного насоса отопления, необходимо в первую очередь определить необходимое количество теплоты требуемое для отопления здания.

    Данный параметр можно вычислить, зная площадь помещения, которое нужно отапливать. Отталкиваясь от европейских стандартов, необходимо подавать 100 Вт тепла на каждый квадратный метр дома, состоящего из 1-2 квартир, и 70 Вт для многоквартирных домов. При этом, если здание имеет улучшенную теплоизоляцию, то норму теплоты можно снизить до 30-50 Вт/м 2 .

    В странах СНГ подобные нормативы для 1-2 квартирных домов не установлены, но согласно документу СНиП 2.04.07-86* необходимо придерживаться следующих показателей:

    1. Для жилых зданий меньше 3-х этажей подводить на каждый метр квадратный площади 173 Вт, при расчетной температуре окружающей среды до -25°С, и 177 Вт/м 2 при -30° С;
    2. Для зданий больше 3-х этажей – 97 и 101 Вт/м 2 соответственно.

    Нормативный документ СНиП 2.04.05-91 также регламентирует расчетную температуру окружающей среды для Киева равную –26°С, что соответствует тепловой потребности 173,8 Вт/м 2 для 1-2 этажных домов и 97,8 Вт/м 2 для зданий имеющих больше двух этажей.

    Требуемая производительность насоса

    Далее подбор циркуляционного насоса для системы отопления сводится к расчету необходимой производительности, другими словами, нужно посчитать подачу насоса по одной из следующих формул:

    • П = Q/(1,16 х ΔT) (кг/ч), где

    ΔT – разница между температурой обратного и подающего трубопровода (для обычных двухтрубных систем принимается 20°С; для подогрева полов в районе 5°С);

    1,16 – величина удельной теплоемкости для воды, размерность Вт*ч/кг*°С. Для других теплоносителей необходимо данную величину заменить;

    • П = 3,6 х Q/(c х ΔT) (кг/ч), где

    с – величина, характеризирующая удельную теплоемкость вещества. Чаще всего это вода, её теплоемкость 4,2 кДж/кг*°С. Если величина задана в м 3 /ч, как это принято в технической документации к насосам, то необходимо ее разделить на плотность вещества при заданной температуре (при t=80°С теплоемкость равна 972 кг/м 3 ).

    Первая формула используется европейскими проектировщиками, вторая используется в СНиП 2.04.05-91.

    Вычисление необходимого давления в системе отопления

    Для полноценной циркуляции жидкости (теплоносителя) в отопительной системе необходимо обеспечить напор, который будет преодолевать гидравлическое сопротивление сети. Чтобы правильно посчитать этот параметр своими руками, нужно выбрать точку системы, которая находится на наибольшем расстоянии от «циркуляционника», т.е. это должен быть самый отдаленный радиатор.

    Общая схема двухтрубной отопительной системы дома

    При проектировании теплосетей используется следующая формула:

    J = (F+R х L)/p х g (м), где:

    • L – длинна участка (м);
    • R – гидросопротивление на прямом участке трубы (Па/м);
    • p – плотность рабочего тела (кг/м 3 );
    • F – сопротивление канализационной арматуры (Па);
    • g – ускорение при свободном падении (м/с 2 ).

    Все необходимые величины можно найти в каталогах производителя либо в сопровождаемой товар технической литературе.

    Для упрощенного расчета используют методику приблизительной оценки сопротивления.

    Экспериментальным путем получены следующие данные:

    • сопротивление на прямых участках трубопровода (R) находится в пределах 105-150 Па/м;
    • в каждом фитинге и подобной арматуре теряется дополнительно 30% к потерям в прямой трубе;
    • терморегулирующий вентиль прибавляет еще 70% к потерям;
    • трехходовой смеситель, расположенный в узле управления, или подобное устройство, которое предотвращает естественную циркуляцию, прибавит еще 20%.

    Еще более простой способ того, как подобрать циркуляционный насос для отопления был предложен специалистами Э. Бушер и К. Вальтер из фирмы Wilo.

    J = R х L х k, где

    k – коэффициент отвечающий за повышенную нагрузку.

    Принимается, что в отопительных системах без сложной водопроводной арматуры k = 1,3; с вентилем регулирующим температуру k= 2,2; с установленными обоими устройствами k = 2,6.

    Выбираем модель насоса исходя из проведенных расчетов

    По ранее вычисленной для заданной системы подаче и напору определяем рабочую точку системы. Для этого на диаграмме, с координатами П и J, отметим точку пересечения вычисленных величин.

    Далее, по каталогам производителей, нужно подобрать циркуляционный насос, который, максимально удовлетворяет рабочие условия системы. Необходимо, чтобы напорно-расходный график насоса был максимально приближен к рабочей точке.

    Неправильно подобранный насос

    Правильно подобранный насос

    Насос, который будет иметь большой запас по определяющим критериям, ставить экономически нецелесообразно. Во-первых, цена самого насоса будет выше, во-вторых, насос будет работать в холостую, тем самым потребляя лишнюю электроэнергию.

    Обратите внимание! При установке циркуляционных насосов с электрорегулятором частоты вращения, вы сможете значительно уменьшить потребляемую электроэнергию, если в гидравлической системе не стационарный режим, а динамический.

    Также стоит учитывать виброшумовой фактор при выборе насоса, если его планируется устанавливать в помещении, которое будет часто посещаться людьми, то о в таком случае предпочтительней будет выбирать среди насосов с мокрым ротором, ведь они работают значительно тише.

    Самопроверка на примере

    Проверить результаты расчетов можно на примере точного вычисления определяющих параметров в реальном проекте, который выполнялся соответственно всем требованиям СНиП.

    По условиям необходимо было произвести расчет для двухтрубной отопительной системы, укомплектованной циркуляционным насосом. В первую очередь было определено необходимое количество теплоты, которое требует здание – 45,6 кВт. Для проектируемой системы отопления расчетный расход теплоносителя составил 2,02 м 3 /ч. Самый отдаленный радиатор системы на своем пути имеет теплорегулирующий вентиль и четыре участка с трубами. Суммарные потери согласно СНиП необходимо дополнить коэффициентом неучтенных потерь в размере 10%.

    H = (0,141 + 0,29+0,63 + 0,11 )*1,1 = 1,295 м

    Из расчета следует, что циркуляционный насос, удовлетворяющий заданную систему, должен создавать подачу 2,02 м 3 /ч и напор 1,295 м. Подходящими насосами являются HZ 401марки Deutsche Vortex и насос марки Grundfos модель UPS 25-40.

    Обратите внимание! Если возникает вопрос выбора между насосом, обеспечивающим подачу на 1-5% выше необходимой и 1-5% ниже – следует остановиться на менее мощном, ведь в расчете уже заложен коэффициент запаса.

    Монтаж насоса в отопительную систему

    Также можете посмотреть видео с инструкцией по установке насосов такого типа

    Приведенная методика поможет решить проблему с выбором насоса даже человеку, который далек от технических расчетов и от техники в целом. Надеемся, после ознакомления с данной статьей вы сможете самостоятельно ответить на вопрос «Как подобрать насос циркуляционный для отопления?».

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: