Строительство деревянных каркасных домов: технологии и последовательность работ

Этапы строительства каркасного дома своими руками

Несмотря на некую консервативность в мышлении населения нашей страны в плане строительства (применение тяжелых надежных каменных и бетонных материалов), все большее распространение получают легкие конструкции. Дома из SIP-панелей, деревянные каркасные и каркасно-щитовые строения завоевывают всё большую популярность. Причиной тому существенно более низкаястоимость, как требуемого материала, так и его монтажа. В статье рассмотрим этапы строительства каркасного домаот фундамента до крыши.

  1. Нюансы деревянного строительства
  2. Фундамент – первый этап строительства каркасного дома
  3. Этап 2: возведение каркаса и междуэтажного перекрытия
  4. Этап 3: крыша
  5. Этап 4: перегородки, коммуникации и внутренняя отделка каркасного дома
  6. Крепежные элементы
  7. Этап 5: отделка фасадов
  8. Заключение

Нюансы деревянного строительства

Основным отличием деревянных конструкций от «классических» каменных, бетонных, железобетонных и стальных является высокая пожароопасность. Применение несущих деревянных конструкций обуславливает класс пожароопасности сооружения не выше III-го (для каменных и бетонных характерен II-ой класс).

Частично проблема решается антипиренами. Это специальные вещества, предназначенные для обработки деревянных конструкций с целью снижения групп воспламеняемости и горючести. Пренебрежение такой обработкой может привести к самым печальным последствиям.

Ещё одним уязвимым местом строительства каркасного дома является подверженность биологическому разрушению. Речь идет о гниении и древоточцах. Для борьбы с этим факторам применяют биозащитные составы. Современная промышленность предлагает комплексные огнебиозащитные средства, наиболее целесообразные к применению для защиты деревянных конструкций.

Отдельно подчеркнем важность скрупулезного выполнения всех требований по электромонтажу. Наиболее частой причиной возгорания домов являются некачественная проводка, использование не сертифицированного электрооборудования (розетки, выключатели), нарушение правил эксплуатации электроприборов.

К бесспорным преимуществам деревянных каркасных домов относят их меньшую стоимость и скорость возведения.

Фундамент – первый этап строительства каркасного дома

Сложным вопросом в рамках частного строительства был, есть и будет выбор типа фундамента. Деревянные строения характерны малым весом. Фундамент, как правило, так же выполняют «облегченным» по отношению к классическому «каменному» варианту дома. При этом все типы фундаментов (ленточные, плитные, свайные) могут применяться и для деревянных домов.

Выбор типа фундамента для каркасного дома в первую очередь зависит от инженерно-геологических условий – прочности грунта, уровня грунтовых вод и так далее. Для каркасного варианта строительства возможно применение столбчатых фундаментов.

Для экономии финансовых средств следует заказать инженерно-геологические изыскания в минимальном объеме. Хотя бы одну скважину глубиной около 5м. На основании отчета об изысканиях посредством консультаций со специалистом можно будет определить оптимальный вариант фундамента. Самостоятельное решение данного вопроса «на глазок» с высокой степенью вероятности обернется либо перерасходом материалов «в запас», либо проблемами в эксплуатации дома, установленного поверх слишком слабого фундамента.
Особое внимание следует уделять уровню грунтовых вод, сезонному их колебанию, а также риску появления верховодки – так называемой «почвенной воды». Оплата изысканий и консультаций со специалистом окупятся сторицей.

Этап 2: возведение каркаса и междуэтажного перекрытия

Возведение каркаса при строительстве деревянного дома начинают с монтажа нижней обвязки. Размеры её поперечного сечения напрямую будут зависеть от типа фундамента. Для свай, установленных с большим шагом (3м и более) нижняя обвязка будет мощнее, чем для других вариантов. Нижняя обвязка поверх свайного фундамента, по сути, является ростверком. Во всех случаях (в том числе при ленточном и плитном фундаменте) эта обвязка должна располагаться выше отметки грунта. Нижняя обвязка должна антисептироваться особенно тщательно. Кроме того, под её низ следует подложить гидроизоляцию из плотного полиэтилена, рубероида или другого рулонного изоляционного материала.

Возводить каркас можно двумя методами – собирая каждый элемент отдельно непосредственно в месте его проектного положения, или же собрать на горизонтальной поверхности каркас целой стены, затем поднять его «на попа» и установить на место. Второй вариант предпочтительнее, так как является более производительным. Особенно он удобен при варианте фундамента в виде утепленной шведской плиты – на момент сборки каркаса черновая поверхность пола первого этажа (верх плиты) представляет собой удобную площадку для сбора каркасов стен.

Возведение каркасного дома из заранее собранных каркасов стен.

Пространственная устойчивость каркаса обеспечивается либо щитами (каркасно-щитовая схема, характерная, в том числе, для SIP-панелей), либо накосо набиваемой во взаимно-обратном направлении доской. На этапе монтажа часто используют временные раскосы, устанавливаемые поверх каркаса. После зашивки щитами или диагональными досками одной из сторон будущей стены временные раскосы снимают.

Пример устройства временных раскосов.

В качестве щитов, как правило, применяют OSB (QSB) плиты толщиной 12мм. При зашивке доской её толщина лежит в пределах 18-25мм.
Шаг стоек (колонн) каркаса очень часто назначают равным 60см, что в случае каркасно-щитовой схемы вызывает недоумение. Размер OSB плиты составляет 125х250см, вследствие чего шаг в 60см формирует необходимость подрезок каждого щита на 5см по ширине или 10см по длине. При этом шаг в 62,5см будет полностью кратен ширине такого листа (2 шага) и длине (4 шага). При дощатой обшивке кратность в 60см проблем не создает.

Читайте также:  Солнечные нагреватели воды для отопления дома: работа водонагревателя

Выбор обшивки щит/доска обычно происходит исходя из цен на эти материалы в регионе строительства. При равной цене предпочтение стоит отдать щитовому варианту, как более технологичному и быстровозводимому.

Каркасно-щитовая схема деревянного дома.

Пример обшивки каркаса доской под 45 градусов во взаимно-обратном направлении.

После возведения каркаса стен первого этажа и устройства верхней обвязки (пояса) начинают монтаж балок перекрытия.

Железобетонные перекрытия (как монолитные, так и сборные) в деревянных домах не применяют. От облегченных вариантов типа Terriva и тому подобных так же лучше отказаться. Древесина имеет сильно отличающиеся от остальных материалов показатели линейного расширения при перепаде температуры. Кроме того, древесины, как «живой» материал, немного изменяет свои размеры и при перепадах влажности. Сочетание в несущем каркасе разнородных материалов крайне не желательно.

Балки перекрытия обычно выполняют из доски 50х200мм или спаренных вдвое досках 50х150мм. Второй вариант предпочтительнее при условии спаривания досок зеркальным отображением годичных колец – такая балка будет стабильнее. Шаг балок зависит от перекрываемого пролета, размеров поперечного сечения и нагрузок. Обычно этот шаг лежит в пределах 60-100см.

Вариант монтажа деревянных балок перекрытия.

Перед возведением каркаса следующего этажа необходимо настелить половой настил поверх балок перекрытия. Для этого применяют шпунтованные половые доски или плитные материалы (OSB, фанера) в два слоя. Стыки второго слоя не должны совпадать со стыками первого. В случае применения половой доски до окончания строительства от загрязнения и повреждения её защищают листами ДВП или плотного картона.

Перекрытия в деревянных каркасных домах должны быть звукоизолированными. Желательно применять отделочные материалы с виброразвязкой. Например, ламинатное покрытие, укладываемое поверх подложки из пробкового дерева. В противном случае слышимость будет очень высокой, а пол будет представлять собой аналог барабана.

Пример устройства звукоизолированного перекрытия по деревянным балкам с виброразвязкой.

Этап 3: крыша

Хорошим вариантом устройства крыши для каркасного дома является её скатный вариант. Крыша может быть односкатной, двухскатной, вальмовой и т.д. В качестве кровельного слоя можно применить любой материал – шифер, профнастил, металлочерепицу, битумную черепицу и т.д.

Узел устройства кровельного слоя с покрытием из битумной черепицы.

Скаты крыши формируют стропильной системой. Стропила чаще всего выполняют из доски сечением 50х150 или 50х200. Шаг стропил зависит от снеговых нагрузок в регионе строительства, пролета, сечения. Обычно шаг оставляет 80-120см.

Стропильная нога опирается на мауэрлат. В каркасном деревянном доме его функцию выполняет верхняя обвязка последнего этажа.

Пример устройства опорного узла стропильной ноги на мауэрлат.

Внешний вид мансардного этажа, формируемого крышей, на этапе защиты утеплителя пароизоляцией.

Этап 4: перегородки, коммуникации и внутренняя отделка каркасного дома

Лучшим вариантом перегородок в деревянном каркасном доме является каркас из деревянного бруса сечением 50х100мм, обшитый с двух сторон все теми же OSB плитами. Шаг стоек для перегородок идентичен несущим стенам. Внутреннюю полость перегородок заполняют звукоизолирующим материалом.

Устройство деревянного каркаса для перегородки.

В помещениях с влажным режимом (санузел) пол и стены дополнительно обшивают магнезитовыми плитами, поверх которых устраивают гидроизоляцию обмазочными материалами. Применение магнезитовых плит дает возможность облицовки стен и потолка керамической плиткой.

Каких-либо препятствий для устройства гипсокартонных перегородок в каркасных деревянных домах не существует.

Прокладка внутридомовых коммуникаций осуществляется до внутренней обшивки стен. Электропроводка закладывается в специальные гофрированные рукава. Прокладки водонесущих коммуникаций в теле перекрытия лучше избегать. Стояки таких коммуникаций обычно пропускают в полости стен.

Оптимальным вариантом внутренней отделки стен и потолка является гипсокартон. Его несложно закрепить саморезами по дереву с последующим шпатлеванием. Финишная часть отделки может быть любой – от покраски до поклейки обоев.

Крепежные элементы

Крепежными элементами в строительстве деревянных домов являются гвозди, строительные скобы и мощные саморезы-глухари. От применения черных фосфатированных саморезов «для гипсокартона» лучше отказаться в виду их хрупкости. Применение такого крепежа при устройстве гипсокартонных перегородок допустимо.

Усилить соединение деревянных элементов можно с помощью стальных уголков, пластин, накладок и т.п.

Металлические изделия для усиления соединений деревянных элементов каркасного дома.

Этап 5: отделка фасадов

Наибольшее распространение для отделки фасадов деревянных каркасных домов получили вентилируемые фасадные системы. Например, сайдинг.

Внешний вид сайдинга.

Какие-либо варианты оштукатуривания для деревянных домов неприемлемы. Облицовка декоративным деревянным кирпичом также вызовет проблемы (за исключением, разве что, цокольной части, если в её пределах не применялись деревянные конструкции).

Читайте также:  Чем отмыть керамическую плитку на полу

Заключение

Во избежание перекосов несущих конструкций требуется четко соблюдать этапы строительства каркасного дома. Особенно это касается элементов пространственной жесткости – временных раскосов и обшивки каркаса. Крайне нежелательно применять более тонкие материалы, особенно щиты. Данная технология строительства не терпит отклонений и самодеятельности. Нельзя, например, обшивку OSB листами заменять плитами ДСП, цементно-песчаные, магнезитовые, гипсоволокнистые. При соблюдении приведенных в данной статье требований срок эксплуатации деревянного каркасного дома составит не менее 50 лет.

Принцип работы солнечной батареи, что такое солнечная батарея

Солнечная батарея – это источник постоянного электрического тока от преобразованной энергии солнца при помощи фотоэлементов.

Фотоэлементы – это преобразователи энергии фотонов в ток.

Фотоны – это элементарная частица, не имеющая массы покоя.

Солнечная батарея для обеспечения бытовых потребностей в электроэнергии

История создания солнечной батареи

В 1839 году Антуаном – Сезаром была представлена батарея, которая преобразовывала энергию Солнца в ток.

В 1877 году Адамс и Дей открыли выработку электричества селеном при действии на него солнечных лучей.

В 1905 году Альберт Эйнштейн описал фотоэффект.

В 1954 году был создан элемент солнечной батареи, выполненной из кремния Гордоном Пирсоном, Кэпом Фуллером и Дэррилом Чапиным.

Виды солнечных батарей

В настоящее время солнечные батареи представлены несколькими вариантами в зависимости от типа их устройства, и от материала, из которого изготовлен фотоэлектрический слой.

I. Классификация по типу их устройства:

  1. 1. Гибкие;
  2. 2. Жёсткие.

II. В зависимости от материала, из которого изготовлен фотоэлектрический слой выделяют:

1. Солнечные батареи, фотоэлемент которых выполнен из кремния. Они в свою очередь бывают монокристаллическими, поликристаллическими и аморфными. Монокристаллические панели достаточно дорогой вариант, но они отличаются высокой мощностью.

Поликристаллические дешевле, чем монокристаллические панели. Такие панели медленней теряют свою эффективность с увеличением сроков службы, а так же при нагревании.

Аморфные представлены в основном тонкопленочными панелями. Такое устройство солнечной батареи позволяет генерировать солнечный свет, даже в плохих погодных условиях;

2. Солнечные батареи, фотоэлемент которых выполнен из теллурида кадмия;

3. Солнечные батареи, фотоэлемент которых выполнен из селена;

4. Солнечные батареи, фотоэлемент которых выполнен из полимерных материалов;

5. Из органических соединений;

6. Из арсенида галлия;

7. Из нескольких материалов одновременно.

Основные типы, которые получили распространение, это многопереходные кремниевые фотоэлементы.

Фотоэлементы, выполненные из кремния, отличаются высокой чувствительностью к нагреванию, компактностью, надежностью и высоким уровнем КПД (коэффициента полезного действия).

Другие материалы не получили широкого распространения в связи с большой стоимостью.

Устройство солнечной батареи

Для того, чтобы солнечная батарея была способна преобразовывать свет солнца в ток, необходимы следующие элементы:

  1. Фотоэлектрический слой, который играет роль полупроводника. Представлен двумя слоями разных по проводимости материалов. Здесь электроны способны переходить из области p(+) в область n (-). Это называется p-n переход;
  2. Между двумя слоями полупроводников помещен элемент, который является по своей сути преградой для перехода электронов;
  3. Источник питания. Он необходим для подключения к элементу, препятствующему переходу электронов. Он преобразовывает движение заряженных электронов, т.е. создает электрический ток. Аккумуляторная батарея. Аккумулирует и хранит энергию;
  4. Контролёр заряда. Основной его функцией является подключение и отключение солнечной батареи исходя от уровня заряда. Более сложные устройства способны контролировать максимальный уровень мощности;
  5. Преобразователь прямого тока в переменный (инвертор);
  6. Устройство, стабилизирующее напряжение. Обеспечивает защиту системы солнечной батареи от скачков напряжения.

Принцип работы солнечной батареи

Принцип работы солнечной батареи основан на фотоэлектрическом эффекте.

Солнечный свет (лучи), попадая на фотоэлектрический слой, полупроводниковых пластин приводит к высвобождению излишних электронов из обоих слоёв (n и p). На место оставшееся после освобождения электронов в одном слое встают освобожденные электроны другого слоя. Таким образом, происходит постоянное передвижение электронов из одного слоя в другой через p-n переход.

В результате этого на внешней цепи начинает появляться напряжение. Слой p становится положительно заряженным, а слой n – отрицательно.

Аккумулятор в ходе этих действий начинает набирать заряд.

Контролёр заряда подключает солнечную батарею, если заряд аккумулятора низкий. И выключает её, в случае, когда аккумулятор заряжен. Также контролер не даёт течь обратному току в то время, когда отсутствует солнце.

Трансформатор прямого тока в переменный необходим для преобразования постоянного тока в переменный с напряжением 220 В. Он бывает двух видов:

  • Сетевой тип инверторов. Обеспечивает работу только в дневное время суток и тех приборов, которые присоединены к нему самому;
  • Автономный тип. Применяется в устройстве элементов солнечной батареи, с наличием аккумуляторной батареи. Они предназначены для работы систем бесперебойного питания.
Читайте также:  Технология сооружения свайно — ленточного фундамента

Это Интересно! Солнечной энергии, выделяемой за 1 секунду, достаточно для удовлетворения потребностей всего человечества на полмиллиона лет!

Преимущества и недостатки использования солнечной батареи

К преимуществам использования солнечной батареи относят:

  1. Экономическую выгоду. Электроэнергия, поставляемая от энергии солнца, бесплатная;
  2. Экологическая безопасность. Работа солнечной батареи не связана с выбросом вредных веществ в атмосферу;
  3. Установка системы солнечной батареи является быстро окупаемой;
  4. Простота эксплуатации и установки.

К недостаткам относят:

  • Дороговизна установки;
  • Маленькие фотоэлементы не обеспечивают всех потребностей в электроэнергии одной семьи;
  • Эффективность их работы зависит от многих факторов, таких как:
    1. Погодных условий;
    2. Температуры на улице и степени нагрева солнечной батареи;
    3. Грамотного выбора всех комплектующих для обеспечения требуемых параметров;
    4. Мощности потока света;
    5. Ориентации солнечной батареи к положению Солнца;
    6. Чистоты панелей.

Применение солнечной батареи

Постепенно происходит внедрение солнечной батареи во многие отрасли жизнедеятельности человека.

Например, солнечные батареи используются:

  • В автомобилестроении;
  • В промышленных объектах;
  • В сельском хозяйстве;
  • На военно-космических объектах;
  • В бытовых нуждах;

Это Интересно! Одним из первых вариантов появления прибора с солнечной батареей был калькулятор, способный работать только при попадании на его фотоэлемент солнечных лучей.

Сейчас солнечными батареями оснащают некоторые модели походных рюкзаков. Они служат источником света, электричества в условиях отсутствия цивилизации.

Использование солнечной батареи как источника электроэнергии интересует все большее количество людей, причем не только в бытовых нуждах, но и для обеспечения электроэнергией предприятий. Для того чтобы эта система была эффективной необходимо знать ее устройство и принцип работы. Это поможет подобрать компоненты в зависимости от желаемой мощности установки.

Как работают солнечные батареи

Cолнце есть и будет всегда! Возможно, это слишком смелое заявление, но это действительно так. По крайней мере, с точки зрения человечества. Пусть оно и взорвется через сколько-то там миллионов лет, но к тому времени мы уже покинем эту планету или сами, или в виде кучки пепла, которую развеет в космосе очередной огромный камень, налетевший на наш голубой шарик. Именно из-за такой стабильности Солнца его можно и нужно использовать для получения энергии. Люди уже давно научились это делать и сейчас продолжают совершенствовать технологии солнечной энергетики. Но как же работают солнечные панели, батареи и вообще, как можно превратить свет в электричество внутри розетки?

Солнечные панели позволяют сделать электричество чуть ли не бесплатным.

Когда появились солнечные батареи

Солнечные батареи были изобретены достаточно давно. Впервые эффект преобразования света в электричество был обнаружен Александром Эдмоном Беккерелем в 1842 году. Для создания первых прототипов потребовалось почти сто лет.

В 1948 году, а именно 25 марта, итальянский фотохимик Джакомо Луиджи Чемичан смог сделать то, что мы теперь используем и развиваем. Спустя 10 лет в 1958 году технология впервые была опробована в космосе в качестве элемента питания американского спутника, названного ”Авангард-1”. Спутник был запущен 17 марта, а уже 15 мая того же года это достижение повторили в СССР (аппарат ”Спутник-3”). То есть технологи начала массово применяться в разных странах почти одновременно.

Использование солнечных панелей в космосе — обычная практика.

Подобные конструкции применяются в космосе до сих пор, как важный источник энергии. А еще их используют на Земле для обеспечения энергией домов и даже целых городов. А еще их начали встраивать в гражданские электромобили для обеспечения большей автономности.

Вообще, важность подобных элементов невозможно переоценить. Только так можно добиться получения энергии в любой точке планеты. Гидроэнергетика, атомные станции, ветряки и тому подобные системы могут быть размещены только в определенных местах, стоят очень дорого или требуют соответствующей инфраструктуры. И только солнечные панели позволяют построить дом в пустыне и электрифицировать его. За относительно небольшие деньги. На «ветряк» их точно не хватит.

Как работают солнечные панели

Стоит немного уточнить, что понятие ”солнечная батарея” не очень правильное. Точнее правильное, но не имеющее отношение к тем системам питания, о которых мы говорим. Батарея там обычная, но получает энергию от солнечных панелей, которые преобразуют в электричество свет солнца.

В основе солнечной панели лежат фотоэлектрические ячейки, которые помещены внутрь общей рамы. Для создания таких ячеек чаще всего используется кремний, но возможно использование и других полупроводников.

Энергия вырабатывается в тот момент, когда на полупроводник попадают солнечные лучи и нагревают его. В результате этого внутри полупроводника высвобождаются электроны. Под действием электрического поля электроны начинают двигаться более упорядоченно, что и приводит к появлению электрического тока.

Примерно так выглядит солнечная панель.

Читайте также:  Состав бетона м300 на 1м3: пропорции исходного сырья

Для того, чтобы получить электричество, надо подключить контакты к обеим сторонам фотоэлемента. В результате этого он начнет питать электричеством подключенный потребитель или просто заряжать батарею, которая потом будет отдавать электричество в сеть, когда это понадобится.

Основной упор на кремний делается из-за его кристаллических особенностей. Впрочем, в чистом виде кремний сам по себе является плохим проводником и для изменения свойств к нему делается крайне малое количество примесей, которые улучшают его проводимость. В основном в число примесей входит фосфор.

Как полупроводники вырабатывают электричество?

Полупроводник является материалом, в атомах которого либо есть лишние электроны (n-тип), либо их не хватает (p-тип). То есть полупроводник состоит из двух слоев с разной проводимостью.

В качестве катода в такой схеме используется n-слой. Анодом является p-слой. То есть электроны из первого слоя могут переходить во второй. Переход происходит за счет выбивания электронов фотонами света. Один фотон выбивает один электрон. После этого они, проходя через аккумулятор, попадают обратно в n-слой и все идет по кругу.

Когда энергия выработана, все начинается по кругу, а свет всегда горит.

В современных солнечных панелях в качестве полупроводника используется кремний, а начиналось все с селена. Селен показал крайне низкий КПД — не более одного процента — и ему сразу стали искать замену. Сейчас кремний в целом удовлетворяет требования промышленности, но есть у него и один существенный минус.

Обработка и очистка кремния для приведения его к тому виду, в котором его можно будет использовать, является достаточно затратной процедурой. Чтобы снизить стоимость производства, проводят эксперименты с его альтернативами — медью, индием, галием и кадмием.

Эффективность солнечных панелей

Есть у кремния еще один минус, который не так существенен, как стоимость, но с которым тоже надо бороться. Дело в том, что кремний очень сильно отражает свет и из-за этого элемент вырабатывает меньше электричества.

Даже повесив столько панелей, все равно надо обеспечивать их нормальную работу. В том числе бороться с отражением света.

Для того, чтобы уменьшить такие потери, фотоэлементы покрывают специальным антибликовым покрытием. Кроме такого слоя, надо использовать и защитный слой, который позволит элементу быть более долговечным и противостоять не только дождю и пыли, но даже падающим веткам небольшого размера. При установке на крыше дома это очень актуально.

Солнце -сила! Ее надо использовать!

Несмотря на общую удовлетворенность технологией и постоянную борьбу за улучшение показателей, современным солнечным панелям все равно есть куда стремиться. На данный момент массово производятся панели, которые перерабатывают до 20 процентов попадающего на них света. Но есть и более современные панели, которые пока ”доводятся до ума” — они могут перерабатывать до 40 процентов света.

А вообще, солнечная энергетика это круто! И помните, даже при таком «пАлящем» солнце система будет работать.

Как работают солнечные батареи: принцип, устройство, материалы

Солнечные батареи считаются очень эффективным и экологически чистым источником электроэнергии. В последние десятилетия данная технология набирает популярность по всему миру, мотивируя многих людей переходить на дешевую возобновляемую энергию. Задача этого устройства заключается в преобразовании энергии световых лучей в электрический ток, который может использоваться для питания разнообразных бытовых и промышленных устройств.

Правительства многих стран выделяют колоссальные суммы бюджетных средств, спонсируя проекты, которые направлены на разработку солнечных электростанций. Некоторые города полностью используют электроэнергию, полученную от солнца. В России эти устройства часто используются для обеспечения электроэнергией загородных и частных домов в качестве отличной альтернативы услугам централизованного энергоснабжения. Стоит отметить, что принцип работы солнечных батарей для дома достаточно сложный. Далее рассмотрим подробнее, как работают солнечные батареи для дома подробно.

Немного истории

Первые попытки использования энергии солнца для получения электричества были предприняты еще в середине двадцатого века. Тогда ведущие страны мира предпринимали попытки строительства эффективных термальных электростанций. Концепция термальной электростанции подразумевает использование концентрированных солнечных лучей для нагревания воды до состояния пара, который, в свою очередь, вращал турбины электрического генератора.

Поскольку, в такой электростанции использовалось понятие трансформации энергии, их эффективность была минимальной. Современные устройства напрямую преобразуют солнечные лучи в ток благодаря понятию фотоэлектрический эффект.

Современный принцип работы солнечной батареи был открыт еще в 1839 году физиком по имени Александр Беккерель. В 1873 году был изобретен первый полупроводник, который сделал возможным реализовать принцип работы солнечной батареи на практике.

Принцип работы

Как было сказано раньше, принцип работы заключается в эффекте полупроводников. Кремний является одним из самых эффективных полупроводников, из известных человечеству на данный момент.

Читайте также:  Чем покрыть бетонные стены перед поклейкой обоев?

При нагревании фотоэлемента (верхней кремниевой пластины блока преобразователя) электроны из атомов кремния высвобождаются, после чего их захватывают атомы нижней пластины. Согласно законам физики, электроны стремятся вернуться в свое первоначальное положение. Соответственно, с нижней пластины электроны двигаются по проводникам (соединительным проводам), отдавая свою энергию на зарядку аккумуляторов и возвращаясь в верхнюю пластину.

Эффективность фотоэлементов, созданных при помощи монокристаллического метода нанесения кремния, является существенно выше, поскольку в такой ситуации кристаллы кремния имеют меньше граней, что позволяет электронам двигаться прямолинейно.

Устройство

Конструкция солнечной батареи очень проста.

Основу конструкции устройства составляют:

  • корпус панели;
  • блоки преобразования;
  • аккумуляторы;
  • дополнительные устройства.

Корпус выполняет исключительно функцию скрепления конструкции, не имея больше никакой практической пользы.

Основными элементами являются блоки преобразователей. Это и есть фотоэлемент, состоящий из материала-полупроводника, которым является кремний. Можно сказать, что состоят солнечные батареи, устройство и принцип работы которых всегда одинаковый, из каркаса и двух тонких слоев кремния, который может быть нанесен на поверхность, как монокристаллическим, так и поликристаллическим методом.

От метода нанесения кремния зависит стоимость батареи, а также ее эффективность. Если кремний наносится монокристаллическим способом, то эффективность батареи будет максимально высокой, как и стоимость.

Если говорить о том, как работает солнечная батарея, то не нужно забывать об аккумуляторах. Как правило, используется два аккумулятора. Один является основным, второй — резервным. Основной накапливает электроэнергию, сразу же направляя ее в электрическую сеть. Второй накапливает избыточную электроэнергию, после чего направляет ее в сеть, когда напряжение падает.

Среди дополнительных устройств можно выделить контроллеры, которые отвечают за распределение электроэнергии в сети и между аккумуляторами. Как правило, они работают по принципу простого реостата.

Очень важными элементами солнечной назвать диоды. Данный элемент устанавливается на каждую четвертую часть блока преобразователей, защищая конструкцию от перегрева из-за избыточного напряжения. Если диоды не установлены, то есть большая вероятность, что после первого дождя система выйдет из строя.

Как подключается

Как было сказано раньше, устройство солнечной батареи достаточно сложное. Правильная схема солнечной батареи поможет добиться максимальной эффективности. Подключать блоки преобразователей необходимо при помощи параллельно-последовательного способа, что позволит получить оптимальную мощность и максимально эффективное напряжение в электрической сети.

Разновидности солнечных батарей

Существует несколько разновидностей фотоэлементов для солнечных батарей, которые отличаются между собой строением кристаллов кремния.

Выделяют три вида фотоэлементов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Первый вид панелей является более дешевым, но менее эффективным, поскольку, если кремний нанесен поликристаллическим способом, то электроны не могут двигаться прямолинейно.

Монокристаллические фотоэлементы отличаются максимальным КПД, который достигает 25 %. Стоимость таких батарей выше, но для получения 1 киловатта нужна существенно меньшая площадь фотоэлементов, чем при использовании поликристаллических панелей.

Из аморфного кремния изготавливают гибкие фотоэлементы, но их КПД самый низкий и составляет 4-6 %.

Преимущества и недостатки

Основные преимущества солнечных батарей:

  • солнечная энергия абсолютно бесплатная;
  • позволяют получать экологически чистую электроэнергию;
  • быстро окупаются;
  • простая установка и принцип работы.

  • большая стоимость;
  • для удовлетворения потребностей небольшой семьи в электроэнергии нужна достаточно большая площадь фотоэлементов;
  • эффективность существенно падает в облачную погоду.

Как добиться максимальной эффективности

При покупке солнечных батарей для дома очень важно подобрать конструкцию, которая сможет обеспечить жилище электроэнергией достаточной мощности. Считается, что эффективность солнечных батарей в пасмурную погоду составляет приблизительно 40 Вт на 1 квадратный метр за час. В действительности, в облачную погоду мощность света на уровне земли составляет приблизительно 200 Вт на квадратный метр, но 40 % солнечного света – это инфракрасное излучение, к которому солнечные батареи не восприимчивы. Также стоит учитывать, что КПД батареи редко превышает 25 %.

Иногда энергия от интенсивного солнечного света может достигать 500 Вт на квадратный метр, но при расчетах стоит учитывать минимальные показатели, что позволит сделать систему автономного электроснабжения бесперебойной.

Каждый день солнце светит в среднем по 9 часов, если брать среднегодовой показатель. За один день квадратный метр поверхности преобразователя способен выработать 1 киловатт электроэнергии. Если за сутки жильцами дома израсходуется приблизительно 20 киловатт электроэнергии, то минимальная площадь солнечных панелей должна составлять приблизительно 40 квадратных метров.

Однако, такой показатель потребления электроэнергии на практике встречается редко. Как правило, жильцы израсходуют до 10 кВТ в сутки.

Если говорить о том, работают ли солнечные батареи зимой, то стоит помнить, что в данную пору года сильно снижается длительность светового дня, но, если обеспечить систему мощными аккумуляторами, то получаемой за день энергии должно быть достаточно с учетом наличия резервного аккумулятора.

Читайте также:  Установка электрических котлов отопления: разбираемся в нюансах

При подборе солнечной батареи очень важно обращать внимание на емкость аккумуляторов. Если нужны солнечные батареи работающие ночью, то емкость резервного аккумулятора играет ключевую роль. Также устройство должно отличаться стойкостью к частой перезарядке.

Несмотря на тот факт, что стоимость установки солнечных батарей может превысить 1 миллион рублей, затраты окупятся уже в течении нескольких лет, поскольку энергия солнца абсолютно бесплатна.

Видео

Как устроена солнечная батарея, расскажет наше видео.

Все о солнечных батареях

  • Принцип работы
  • Типы фотоэлектрических преобразователей
  • Характеристики кремниевых солнечных батарей
  • Монокристалл
  • Поликристалл
  • Аморфный кремний
  • Обзор модулей, не использующих кремний
  • Полимерные и органические батареи
  • Как сделать правильный выбор
  • Почему так важна эффективность
  • Заключение
  • Видео по теме

Планета Земля и вся зародившаяся на ней жизнь прошла не малый путь эволюции. Солнце обеспечивало энергией все живое и неживое, на протяжении всего периода существования планеты. В 21 столетии мы научились неплохо взаимодействовать с солнечным светом и использовать его в качестве альтернативной энергетики. Для этого инженерами были разработаны и внедрены в эксплуатацию солнечные батареи.

Принцип работы

Конструкция множества солнечных батарей сделана по принципу, что они в физическом смысле являются фотоэлектрическими преобразователями. Электрогенерирующий эффект проявляется в месте «p–n» перехода.

Чтобы сконцентрировать в себе солнечную энергию, полупроводники выполнены в форме панелей. По этой причине эти конструкции получили одноимённое название в независимости от их формы (гибкие или статичные) — солнечные панели.

По какому принципу работают солнечные панели и системы на их основе? Панель включает в себя 2 кремневые пластины с различимыми друг от друга свойствами. Процесс вырабатывания электроэнергии происходит так:

  1. Воздействие солнечных лучей на первую приводит к недостаче электронов.
  2. При воздействии на вторую пластину, та получает избыток электронов.
  3. К пластинам подведены полосы из меди, проводящие ток.
  4. Полосы подключаются к преобразователям напряжения с встроенными АКБ.

Основа — это кремниевые пластины. Но чтобы данную конструкцию использовать в качестве источника бесперебойного питания (а не только во время солнцестояния), к ней подключаются не дешевые аккумуляторы (с их помощью подключенные к сети объекты расходуют энергию ночью).

В промышленности конструкция для поглощения энергии Солнца сделана из многочисленных ламинированных фотоэлектрических ячеек, связанных друг с другом и поставленных на гибкой или жесткой подставке.

Коэффициент полезного действия конструкции вычисляется исходя из применения разных факторов. Основными являются — чистота задействованного кремния и размещение кристаллов.

Процесс очищения кремния довольно сложен, да и расположить кристаллы в единой направленности не легко. Сложность процессов, отвечающих за повышение КПД конвертируется в высокую цену за подобное оборудование.

Солнечные панели — перспективное направление в энергетике, поэтому в исследования новых проектов в этой сфере инвестируется многомиллиардные вложения. Каждый квартал коэффициент фотоэлектрического преобразования повышается, благодаря манипуляциям с проводниками и элементами конструкции. При этом, за основу может браться не только кремний.

Типы фотоэлектрических преобразователей

В промышленности существует классификация солнечных батарей по типу устройства и применяемого фотоэлектрического слоя.

По устройству делятся на:

  • панели из гибких элементов, они же гибкие;
  • панели из жестких элементов.

При развертывании панелей чаще всего используются гибкие тонкоплёночные. Они укладываются на поверхность, игнорируя некоторые неровные элементы, что делает данный тип устройства — более универсальным.

По типу фотоэлектрического слоя для последующего преобразования энергии панели делятся на:

  1. Кремниевые (монокристалл, поликристалл, аморфные).
  2. Теллурий–кадмиевые.
  3. Полимерные.
  4. Органические.
  5. Арсенида–галлиевые.
  6. Селенид индия– меди– галлиевые.

Хотя разновидностей множество, львиную долю в потребительском обороте имеют кремниевые и теллурий–кадмиевые солнечные панели. Эти два типа выбирают из–за соотношения КПД/цена.

Характеристики кремниевых солнечных батарей

Кварцевый порошок — это сырьевой материал для кремния. Данного материала на Урале и Сибири очень много, поэтому именно кремниевые солнечные панели есть и будут в большем обиходе, чем остальные подтипы.

Монокристалл

Монокристаллические пластины (mono–Si) содержат в себе синевато–темный цвет, равномерно размещенный на всей пластине. Для таких пластин применяется максимально очищенный кремний. Чем он чище, тем КПД солнечных батарей выше и самую наибольшую стоимость на рынке таких устройств.

  1. Наивысший КПД — 17–25%.
  2. Компактность — задействование сравнительно с поликристаллом меньшей площади для развертывания оснащения в условиях тождества мощности.
  3. Износостойкость — бесперебойная работа выработки электроэнергии без замены основных комплектующих обеспечивается за четверть века.
  1. Чувствительность к пыли и грязи — осевшая пыль не дает батареям работать со светом от светила и соответственно уменьшает КПД.
  2. Высокая цена равна увеличенному сроку окупаемости.

Так как mono–Si нуждаются в ясной погоде и лучах Солнца, панели устанавливаются на открытых местах и поднятые на высоту. Насчет местности, то предпочтение отдается местности, в которой ясная погода обыденность, а количество солнечных дней приближено к максимальному.

Читайте также:  Универсальная стойка для дрели на основе магнитного подъемника

Поликристалл

Поликристаллические пластины (multi–Si) наделены неравномерным синим окрасом из–за разнонаправленности кристаллов. Кремний не настолько чист, как в используемых mono–Si, поэтому КПД несколько ниже, вместе со стоимостью таких солнечных батарей.

Положительные факты поликристалла:

  1. Коэффициент полезного действия 12–18%.
  2. При неблагоприятной погоде КПД лучше, чем у Mono–Si.
  3. Цена данного агрегата меньше, а сроки окупаемости намного ниже.
  4. Ориентация на солнце не принципиальна, поэтому можно размещать их на крышах различных строений.
  5. Длительность эксплуатации — эффективность поглощения энергии и аккумулирования электричества падает до 20% спустя 20 лет непрерывной эксплуатации.
  1. КПД уменьшен до 12–18%.
  2. Требовательность к месту. Для развертывания нормальной станции выработки электроэнергии нужно больше места, чем при задействовании батареи из монокристалла.

Аморфный кремний

Технология производства панелей существенно отличается от предыдущих двух. В приготовлении задействованы горячие пары, опускающиеся на подложку без образования кристаллов. При этом используется меньше производственного материала и это учитывается при формировании цены.

  1. Коэффициент полезного действия — 8–9% во втором поколении и до 12% в третьем.
  2. Высокий коэффициент полезного действия при не совсем солнечной погоде.
  3. Возможность использования на гибких модулях.
  4. Эффективность батарей не падает вниз при повышении температуры, что позволяет монтировать их на всякие поверхности с нестандартной формой.

Основным недостатком можно считать меньший КПД (если сравнивать с иными аналогами), в связи с чем требуется большая площадь для получения сопоставимой отдачи от оборудования.

Обзор модулей, не использующих кремний

Солнечные панели, изготавливаемые из более дорогих аналогов, достигают коэффициента в 30%, они могут быть в несколько раз дороже аналогичных систем на основе кремния. Некоторые из них всё же имеют более низкий КПД, при этом обладая возможностью работать в агрессивной среде. Для изготовления таких панелей применяется чаще всего теллурид кадмия. Применяются и другие элементы, но реже.

Перечислим основные преимущества:

  1. Высокий КПД, от 25 до 35%, с возможностью достигнуть, в относительно идеальных условиях даже 40%.
  2. Фотоэлементы стабильны даже при температурах до 150 °C.
  3. Концентрация света от светила на маленькой панели позволяет обеспечить водяной теплообменник энергией, в результате чего образовывается пар, который вращает турбину и генерирует электричество.

Как и говорили ранее — минусом является высокая цена, но в некоторых случаях они являются лучшим решением. Например, в экваториальных странах, где поверхность модулей может нагреться до 80 °C.

Полимерные и органические батареи

Модули, созданные на основе полимерных и органических материалов, получили своё распространение в последние 10 лет, они создаются в виде плёночных конструкций, толщина которых редко превышает 1 мм. Их КПД близок к 15%, а стоимость в несколько раз ниже кристаллических аналогов.

  1. Низкая стоимость производства.
  2. Гибкий (рулонный) формат.

Недостатком панелей из этих материалов является снижение эффективности на длительной дистанции. Но этот вопрос ещё исследуется и производство постоянно модернизируется, чтобы исключить минусы, которые могут проявиться в существующем поколении такого вида батарей через 5–10 лет.

Как сделать правильный выбор

Для владельцев домов, расположенных на Европейском континенте выбор довольно прост — это поликристалл либо монокристалл из кремния. При этом, при ограниченных площадях стоит сделать выбор в пользу монокристаллических панелей, а при отсутствии таких ограничений — в пользу поликристаллических батарей. При выборе производителя, технических параметров оборудования и дополнительных систем стоит обратиться к компаниям, которые занимаются как продажей, так и установкой комплектов. Учитывайте, что вне зависимости от производителя — качество систем у «топовых» производителей вряд ли будет отличаться, поэтому не дайте себя обмануть, изучая ценовую политику.

Если решили заказать установку «солнечной фермы» под ключ, учтите, что сами панели в пакете таких услуг займут всего 1/3 общей стоимости, а окупаемость вплотную приблизится к отметке «10 лет»:

  1. Бюджетным, но эффективным выбором станут панели от компании Amerisolar, поликристаллическая модель носит название AS–6P30 280W, имеет размер 1640х992 мм и выдаёт, соответственно — 280 Вт мощности. КПД модуля составляет 17.4%. Из минусов — гарантия всего 2 года. Но стоимость ∼7 тыс. рублей.
  2. Аналогичным по мощности будет модуль RS 280 POLY от китайской Runda, стоимость ещё ниже — около 6 тыс. рублей.
  3. Если место ограничено, стоит обратить внимание на продукт компании LEAPTON SOLAR — LP72–375M PERC, КПД составляет 19.1%, и при размерах 1960х992 мм получаем на выходе 375 Вт энергии. Стоимость такой батареи будет в районе 10 тыс. рублей.
  4. Ещё одним эффективным вариантом с меньшими габаритами, 1686х1016 мм будет новинка от LG — NeOn 340 W. «Не он» может похвастаться КПД в 19.8%, но не может похвастаться стоимостью, она будет более чем в половину выше предыдущего образца — примерно 16 тысяч рублей.
  5. Для тех, кто хочет обратить своё внимание на премиальный сегмент, тайваньская компания BenQ выпустила на рынок монокристальный модуль SunForte PM096B00 333W, выдающий на выходе 333 Вт мощности, имеющий номинальный КПД в 20.4% при размерах 1559х1046 мм. Этот модуль получил впечатляющую стоимость в почти 35 тысяч рублей.
Читайте также:  Терраса своими руками: расположение, размеры, строительство

Читайте также: может ли быть использована солнечная панель для дачи, какие дополнительные устройства и материалы необходимы и как их выбрать.

Почему так важна эффективность

Большое значение эффективность приобретает при расчёте площади, которую вы можете использовать под систему солнечных батарей. При сопоставимых размерах описанных модулей от Amerisolar AS–6P30 280W (1.63 квадратных метра) и NeOn 340 W от LG (1.71 квадратных метра), разница в мощности на один квадратный метр на выходе будет составлять 15.6%. С одной стороны, это может показаться не очень эффективным, учитывая разницу в цене более чем в два раза, но в случае с ограниченным пространством или более агрессивной внешней средой, возможно, сдвинет ваш выбор в пользу этого известного производителя.

Увеличенный коэффициент полезного действия подчеркивает не только эффективность технологии изготовления, но и качественные материалы, используемые при изготовлении. Это сможет сказаться на сроках работы устройств, на устойчивость панелей к так называемой деградации. Не стоит забывать также и про гарантийные обязательства производителя. Имея представительства и гарантийные сервисы почти во всех уголках мира — LG сможет похвастаться более лояльным подходом к клиентам и выполнением своих обязательств.

Заключение

Если рассматриваете установку солнечной станции в качестве инвестиций, выбор моделей с меньшим КПД будет более оправданным. Если целью является использование системы в домашнем хозяйстве, по принципу «установил и забыл», мы порекомендуем обратить внимание на панели от более именитых производителей, это позволит получить большую отдачу от станции в долгосрочной (более 5 лет) перспективе.

Видео по теме

Солнечные батареи: как это работает

Поделитесь в соцсетях:

  • Нажмите, чтобы поделиться на Twitter (Открывается в новом окне)
  • Нажмите здесь, чтобы поделиться контентом на Facebook. (Открывается в новом окне)
  • Нажмите, чтобы поделиться на LinkedIn (Открывается в новом окне)
  • Нажмите, чтобы поделиться записями на Pocket (Открывается в новом окне)
  • Нажмите, чтобы поделиться в Telegram (Открывается в новом окне)

Солнечные батареи уже сейчас используются для питания самой разнообразной техники: от мобильных гаджетов до электромобилей. Как устроены, какими бывают и на что способны современные солнечные батареи, вы узнаете из этой статьи.

История создания

Так исторически сложилось, что солнечные батареи – это уже вторая попытка человечества обуздать безграничную энергию Солнца и заставить ее работать себе на благо. Первыми появились солнечные коллекторы (солнечные термальные электростанции), в которых электричество вырабатывает нагретая до температуры кипения под сконцентрированными солнечными лучами вода.

Солнечная термальная электростанция в испанском городе Севилья

Солнечные же батареи производят непосредственно электричество, что намного эффективнее. При прямой трансформации теряется значительно меньше энергии, чем при многоступенчатой, как у коллекторов (концентрация солнечных лучей, нагрев воды и выделение пара, вращение паровой турбины и только в конце выработка электричества генератором).

Современные солнечные батареи состоят из цепи фотоэлементов – полупроводниковых устройств, преобразующих солнечную энергию напрямую в электрический ток. Процесс преобразования энергии солнца в электрической ток называется фотоэлектрическим эффектом.

Данное явление открыл французский физик Александр Эдмон Беккерель в середине XIX века. Первый же действующий фотоэлемент спустя полвека создал русский ученый Александр Столетов. А уже в двадцатом столетии фотоэлектрический эффект количественно описал не требующий представления Альберт Эйнштейн.

Беккерель, Столетов и Эйнштейн – именно этому «трио» ученых мы обязаны созданием солнечных батарей

Принцип работы

Полупроводник – это такой материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип). Соответственно, полупроводниковый фотоэлемент состоит из двух слоев с разной проводимостью. В качестве катода используется n-слой, а в качестве анода – p-слой.

Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Именно лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой.

Схема работы фотоэлемента

Первым в истории фотоэлектрическим материалом был селен. Именно с его помощью производили фотоэлементы в конце XIX и начале XX веков. Но учитывая крайне малый КПД (менее 1 процента), селену сразу же начали искать замену.

Читайте также:  Современные идеи дизайна прихожей

Массовое же производство солнечных батарей стало возможным после того как телекоммуникационная компания Bell Telephone разработала фотоэлемент на основе кремния. Он до сих пор остается самым распространенным материалом в производстве солнечных батарей. Правда, очистка кремния – процесс крайне затратный, а потому мало-помалу пробуются альтернативы: соединения меди, индия, галлия и кадмия.

Селен – исторически первый, а кремний – самый массовый материал в производстве фотоэлементов

Понятное дело, что мощности отдельных фотоэлементов недостаточно, чтобы питать мощные электроприборы. Поэтому их объединяют в электрическую цепь, тем самым формируя солнечную батарею (другое название – солнечная панель).

На каркас солнечной батареи фотоэлементы крепятся таким образом, чтобы их в случае выхода из строя можно было заменять по одному. Для защиты от воздействия внешних факторов всю конструкцию покрывают прочным пластиком или закаленным стеклом.

Мобильный телефон Samsung E1107 оснащен солнечной батареей

Существующие разновидности

Классифицируются солнечные батареи по мощности вырабатываемого электричества, которая зависит от площади панели и ее конструкции. Мощность потока солнечных лучей на экваторе достигает 1 кВт, тогда как в наших краях в облачную погоду она может опускаться ниже 100 Вт. В качестве примера возьмем средний показатель (500 Вт) и в дальнейших расчетах будем отталкиваться от него.

Наручные часы Citizen Eco-Drive с солнечной батареей вместо циферблата

Самым низким коэффициентом фотоэлектрического преобразования обладают аморфные, фотохимические и органические фотоэлементы. У первых двух типов он равен примерно 10 процентам, а у последнего – всего лишь 5 процентам. Это означает, что при мощности солнечного потока в 500 Вт солнечная панель площадью один квадратный метр будет вырабатывать соответственно 50 и 25 Вт электроэнергии.

Монтаж солнечных панелей на крыше жилого дома

В противовес вышеупомянутым типам фотоэлементов выступают солнечные батареи на основе кремниевых полупроводников. Коэффициент фотоэлектрического преобразования на уровне 20%, а при благоприятных условиях — и 25% для них привычное дело. Как результат, мощность метровой солнечной панели может достигать 125 Вт.

Гоночный электромобиль Honda Dream на солнечных батареях появился еще в 1996 г.

Конкурировать по мощности с кремниевыми солнечными батареями способны разве что решения на основе арсенида галлия. Используя это соединение, инженеры научились создавать многослойные фотоэлементы с КФП свыше 30% (до 150 Вт электричества с квадратного метра).

Портативная солнечная панель Solarland мощностью 130 Вт и стоимостью $860

Если же говорить о площади солнечных батарей, то существуют как миниатюрные «пластинки» мощностью до 10 Вт (для частой транспортировки), так и широченные «листы» на 200 Вт и более (сугубо для стационарного использования).

Беспилотный самолет, разработанный NASA Ames Research Center, способен на солнечной энергии пролететь от восточного побережья США до западного

На работу солнечных батарей может негативно влиять ряд факторов. К примеру, с ростом температуры снижается КФП фотоэлементов. Это при том, что солнечные батареи как раз-то и устанавливают в жарких солнечных странах. Получается своеобразная палка о двух концах.

Солнечную батарею Voltaic можно носить у себя за спиной

А если затемнить часть солнечной панели, то неактивные фотоэлементы не только прекращают вырабатывать электричество, но и становятся дополнительной, зловредной нагрузкой.

«Солнечное дерево – культурный и одновременно научный символ австрийского городка Глайсдорф

Крупнейшие производители

Лидерами глобального производства солнечных батарей являются компании Suntech, Yingli, Trina Solar, First Solar и Sharp Solar. Первые три представляют Китай, четвертая – США, а пятая, как нетрудно догадаться, является подразделением японской корпорации Sharp.

Гольфкар на солнечных батареях – бесшумное и экологически чистое средство передвижения

Американская компания First Solar не только производит солнечные батареи, но и принимает непосредственное участие в проектировании и строительстве солнечных электростанций. Мощнейшая в мире СЭС Агуа-Калиенте, которая находится в штате Аризона, США – дело рук инженеров First Solar.

Крупнейшую же украинскую СЭС «Перово» строила и снабжала солнечными панелями австрийская компания Activ Solar.

Китайская же компания Suntech прославилась тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.

Национальный стадион в Пекине густо усеян солнечными батареями производства Suntech

Выводы

Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.

Читайте также:  Черновой потолок своими руками: инструкция

Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».

Как работают солнечные батареи

Любовь Карась

В рамках международных программ по устойчивому развитию и глобального «озеленения» специалисты ищут альтернативные источники энергии. Одним из таких решений являются солнечные батареи, которые все чаще используются в новых домах — в том числе в России. Т&Р рассказывают, как рассчитать необходимую для солнечных батарей энергию, и объясняют, почему их нельзя считать полностью экологичными.

Устройство солнечных батарей

Согласно данным Statista, мировая мощность солнечных батарей выросла с 5 гигаватт в 2005 году до 509,3 гигаватта к 2018 году. В одной только Германии совокупное количество солнечных батарей достигло 42,4 гигаватта. Эта технология остается одним из наиболее финансируемых возобновляемых источников , а стоимость рынка солнечной энергии продолжает расти.

Система с солнечными батареями может полностью обеспечивать электроэнергией средний дом в течение нескольких часов, если он подключен к сети. Даже если электричество отключить, батареи продолжат работу .

Система накопления солнечной энергии состоит из четырех основных частей:

Солнечные панели — они обеспечивают электричеством систему при достаточном солнечном свете.

Контроллеры заряда солнечных батарей — управляют мощностью, поступающей в батареи, и предотвращают обратный ток, который истощает батареи, когда солнце не светит.

Батареи — запасают энергию постоянного тока от солнечных панелей для последующего использования в доме.

Инвертор — преобразует мощность постоянного тока от солнечных панелей или батарей в мощность переменного тока для дома.

Две кремниевые пластины покрыты разными веществами (бор и фосфор). На пластинке с фосфором образуются свободные электроны. Они начинают двигаться под воздействием солнечного света. Образуется электрический ток, который впоследствии направляется в сами батареи, где и накапливается солнечная энергия.

Чем больше панель, тем больше энергии вы можете собрать. Иногда собирается больше энергии, чем необходимо, поэтому на более крупных панелях устанавливается стабилизатор напряжения для управления потоком энергии и предотвращения повреждения батареи. При выборе солнечной батареи нужно знать, сколько энергии она может хранить . Затем вы можете выбрать солнечную панель, которая может пополнить ваш запас энергии в батарее с учетом того, как часто вы пользуетесь какой-то техникой.

Как рассчитать солнечную энергию

Теоретически, чтобы рассчитать энергию солнечной батареи, нужно умножить ватты (солнечной панели) на количество часов нахождения на солнце. Например, если телевизор мощностью 20 Вт будет включен в течение двух часов, его батарея потребует 20×2 = 40 Вт в день.

На практике этот способ не работает, так как есть множество внешних факторов, таких как сезонные различия, климатические и так далее.

Британская организация Solar Technology International приводит пример: в средний зимний день в Великобритании период солнечного света составляет всего один час, в летние дни — около шести часов солнечного света . Таким образом, зимой 10-ваттная панель будет обеспечивать 10-ваттную энергию обратно в батарею (10 Вт x 1 = 10 Вт). А летом 10-ваттная панель будет обеспечивать 60-ваттную энергию обратно в вашу батарею (10 Вт x 6 = 60 Вт).

Солнечные батареи — это экологично?

Для изготовления солнечных панелей требуются едкие химические вещества, такие как гидроксид натрия и плавиковая кислота, а в процессе используется вода, а также электричество, при производстве которых выделяются парниковые газы.

Согласно данным National Geographic, в Китае производитель панелей Jinko Solar столкнулся с протестами, на него подали в суд, так как один из его заводов в восточной провинции Чжэцзян сбрасывал токсичные отходы в близлежащую реку.

Кроме того, до сих пор не решена проблема с переработкой солнечных батарей . Бен Сантаррис, директор по стратегическим вопросам SolarWorld, сказал, что его компания прикладывает усилия по переработке панелей, но результата пока нет. По словам Дастина Малвани, доцента экологических исследований в Государственном университете Сан-Хосе, переработка крайне важна из-за материалов, используемых для изготовления панелей, так как при попадании в мусорку они становятся опасны для окружающей среды. По данным Toshiba Energy Systems & Solutions Corporation, на переработку солнечных панелей, выпущенных за все время в Японии, потребуется не менее 19 лет .

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: