Солнечный коллектор своими руками. Как сделать солнечный коллектор своими руками?

Солнечный коллектор своими руками — как собрать гелиоколлектор

Альтернативные источники возобновляемой энергии пользуются огромной популярностью. В некоторых странах ЕС автономное теплоснабжение покрывает более 50% потребностей в энергии. В РФ солнечные коллекторы пока не получили широкого распространения. Одна из основных причин: дороговизна оборудования. За гелиопанель отечественного изготовителя потребуется отдать не менее 16-20 тыс. руб. Продукция европейских брендов обойдется еще дороже, начиная с 40-45 тыс. руб.

Изготовление солнечного коллектора своими руками будет дешевле, по крайней мере в половину. Самодельный гелиоколлектор обеспечит достаточным количеством тепла для нагрева душевой воды на 3-4 человек. Для изготовления понадобятся строительные инструменты, смекалка и подручные средства.

Из чего можно сделать гелиосистему

Для начала следует разобраться в том, какой принцип работы использует солнечный водонагреватель. Во внутреннем устройстве блока присутствуют следующие узлы:

теплообменник, внутри которого будет циркулировать теплоноситель;

  • отражатели для фокусировки солнечных лучей.
  • Заводской коллектор для нагрева воды от солнца работает следующим образом:

      Абсорбция тепла — солнечные лучи проходят сквозь стекло, расположенное поверх корпуса, либо через вакуумные трубки. Внутренний абсорбирующий слой, контактирующий с теплообменником окрашен селективной краской. При попадании солнечных лучей на абсорбер выделяется большое количество тепла, которое собирается и используется для нагрева воды.

    Теплопередача — абсорбер расположен в тесном контакте с теплообменником. Аккумулируемое абсорбером и передаваемое теплообменнику тепло нагревает жидкость, движущуюся по трубкам к змеевику внутри бака теплонакопителя. Циркуляция воды в водонагревателе осуществляется принудительным или естественным способом.

    ГВС — используется два принципа подогрева горячей воды:

      Прямой нагрев — горячая вода после нагрева попросту сбрасывается в теплоизолированную емкость. В моноблочной гелиосистеме в качестве теплоносителя используется обычная бытовая вода.
  • Второй вариант — обеспечение ГВС с пассивным водонагревателем по принципу косвенного нагрева. Теплоноситель (часто антифриз) под давлением направляется в теплообменник гелиоколлектора. После нагрева разогретая жидкость подается в накопительный бак, внутри которого встроен змеевик (играющий роль нагревательного элемента), окруженный водой для системы горячего водоснабжения.
    Теплоноситель разогревает змеевик, посредством чего и передает тепло воде, находящейся в емкости. При открытии крана нагретая вода из теплоаккумулирующей ёмкости поступает к точке водоразбора. Особенность гелиосистемы с косвенным нагревом в способности работать в течение всего года.
  • Принцип работы, используемый в дорогостоящих заводских гелиосистемах, копируется и повторяется в коллекторах, изготавливаемых своими руками.

    Рабочие конструкции солнечных водонагревателей имеют схожее устройство. Только изготавливаются из подручных материалов. Существуют схемы производства коллекторов из:

  • ПНД и ПВХ труб.
  • Судя по схемам, современные «Кулибины» отдают предпочтение самодельным системам с естественной циркуляцией, термосифонного типа. Особенность решения в том, что накопительную емкость располагают в верхней точке ГВС. Вода самотеком циркулирует в системе и подается потребителю.

    Коллектор из поликарбоната

    Изготавливают из сотовых панелей, отличающихся хорошими теплоизоляционными свойствами. Толщина листов от 4 до 30 мм. Выбор толщины поликарбоната зависит от необходимой теплоотдачи. Чем толще лист и ячейки в нем, тем больше воды сможет нагреть установка.

    Чтобы самому сделать гелиосистему, в частности самодельный солнечный водонагреватель из поликарбоната, понадобятся следующие материалы:

      две штанги с нарезанной резьбой;

    пропиленовые уголки, на фитингах должно быть наружное резьбовое соединение;

    пластиковые трубы ПВХ: 2 шт, длина 1,5 м, диаметр 32;

  • 2 заглушки.
  • Трубы укладывают в корпус параллельно. Подключают к ГВС через отсекающие краны. Вдоль трубы делают тонкий надрез, в который можно вставить лист поликарбоната. Благодаря принципу термосифона вода будет самостоятельно поступать в желобки (ячейки) листа, нагреваться и уходить в накопитель, расположенный вверху всей системы нагрева. Для герметизации и фиксации листов, вставленных в трубу, используют силикон, стойкий к термическому воздействию.


    Чтобы увеличить теплоэффективность коллектора из сотового поликарбоната, лист покрывают любой селективной краской. Нагрев воды после нанесения селективного покрытия ускоряется приблизительно в два раза.

    Коллектор из вакуумных трубок

    В этом случае не получится обойтись исключительно подручными средствами. Для изготовления солнечного коллектора придется купить вакуумные трубки. Их продают компании, занимающиеся обслуживанием гелиосистем и непосредственно производители гелиоводонагревателей.

    Для самостоятельного производства лучше выбирать колбы с перьевыми стержнями и тепловым каналом heat-pipe. Трубки легче монтировать и менять в случае необходимости.

    Также нужно приобрести блок-концентратор для вакуумного солнечного коллектора. При выборе обращают внимание на производительность узла (определяется по количеству трубок, которые можно одновременно подключить к устройству). Раму изготавливают самостоятельно, собирая деревянный каркас. Экономия при изготовлении в домашних условиях, с учетом приобретения готовых вакуумных трубок, составит не менее 50%.

    Гелиосистема из пластиковых бутылок

    Для приготовления потребуется около 30 шт. ПЭТ бутылок. При сборке удобнее использовать тару одинакового размера на 1 или 1,5 л. На подготовительном этапе с бутылок снимают этикетки, поверхность тщательно промывают. Кроме пластиковой тары понадобится следующее:

      12 м шланга для полива растений, диаметром 20 мм;

    8 Т-образных переходников;

    рулон тефлоновой пленки;

  • 2 шаровых крана.
  • При изготовлении солнечных коллекторов из пластиковых бутылок внизу основания делают отверстие, равное диаметру горлышка, куда вставляют резиновый шланг, либо ПВХ трубу. Коллектор собирают в 5 рядов по 6 бутылок на каждой линии.


    В ясный день уже через 15 мин. вода нагреется до температуры 45°С. Учитывая высокую производительность солнечный водонагреватель из пластиковых бутылок имеет смысл подключить к накопительной емкости в 200 л. Последнюю хорошо утепляют для предотвращения теплопотерь.

    Коллектор из алюминиевых пивных банок

    Алюминий отличается хорошими теплотехническими характеристиками. Не удивительно, что металл используют для изготовления радиаторов отопления.

    Алюминиевые банки можно применять при изготовлении самодельных гелиосистем. Для производства не подойдут банки из жести и любого другого металла.

    Читайте также:  Черные унитазы: современные тенденции дизайна

    Для одной гелиопанели будут необходимы следующие комплектующие:

      банки, около 15 шт. на линию, в корпус вмещается 10-15 рядов;

    теплообменник — используется коллектор из резинового шланга, или пластиковых труб;

    клей для склеивания банок между собой;

  • селективная краска.
  • Поверхность банок окрашивается в темный цвет. Короб накрывают толстым стеклом или поликарбонатом.


    Солнечный коллектор из алюминиевых банок чаще изготавливают для воздушного отопления. При использовании водяного теплоносителя снижается теплоэффективность устройства.

    Гелиосистема из холодильника

    Еще одно популярное решение, требующее минимальных затрат времени и средств. Солнечный коллектор делают из радиатора старого холодильника. Змеевик уже окрашен в черный цвет. Достаточно только уложить решетку в деревянный корпус с изоляцией и подключить его к ГВС, при помощи пайки.

    Существует вариант изготовления из конденсатора кондиционера. Для этого несколько радиаторов соединяют в единую сеть. Если существует возможность приобрести дешево около 8 шт. конденсаторов, изготовление коллектора вполне возможно.

    Коллектор из медных трубок

    Медь отличается хорошими теплотехническими свойствами. При изготовлении медного солнечного коллектора используют:

      трубы диаметром 1 1/4″, используемые при монтаже систем отопления и горячего водоснабжения;

    трубы на 1/4″, используемые в системах кондиционирования;

  • припой и флюс.
  • Корпус радиаторной решетки собирается из медных труб с большим диаметром. В поверхности просверливают отверстия равные 1/4″. В полученные пазы вставляют трубы соответствующего диаметра. Радиатор закрывают стеклом или поликарбонатом. Медь окрашивают селективной краской.

    Солнечный бойлер из ПНД труб и ПВХ шлангов

    При производстве гелиосистем используют практически любой подручный материал. Существуют решения, позволяющие изготовить коллектор из гофрошланга, резинового шланга, используемого для полива растений.

    Существует возможность изготовления солнечного коллектора из гофрированной нержавеющей трубы. Популярность решения обусловлена скоростью и простотой монтажа. Гофротруба из нержавейки укладывается кольцами или змейкой. Недостаток, относительная дороговизна нержавеющей гофрированной трубы.

    Несмотря на существующие варианты, описанные выше, наиболее популярными остаются солнечные коллекторы из пропиленовых и ПНД труб. У каждого варианта есть свои преимущества:

      Солнечный коллектор из ПНД трубы — для изготовления выбирают материал, устойчивый к нагреванию. Продается большое количество фитингов, облегчающих сборку теплоаккумулирующего радиатора. Трубы из полиэтилена низкого давления изначально имеют черный или темно-синий цвет, поэтому не требуют окрашивания.

  • Солнечный коллектор из ПВХ труб — популярность решения в простоте монтажа конструкции, осуществляемого с помощью пайки. Наличие большого количества уголков, тройников, американок и других фитингов облегчает процесс сборки. С помощью пайки можно создать теплообменник коллектора любой конфигурации.
  • Изготовление солнечного водогрейного коллектора из PEX трубы:

    Все описанные трубы с той или иной эффективностью используются в качестве сердечника при изготовлении самодельного гелиоколлектора из пластиковых бутылок и алюминиевых банок.

    Как сделать селективное покрытие

    Высокоэффективный коллектор имеет высокую степень поглощения солнечной энергии. Лучи попадают на темную поверхность, после чего нагревают ее. Чем меньше излучения отталкивается от абсорбера солнечного коллектора, тем больше тепла остается в гелиосистеме.

    Чтобы обеспечить достаточную аккумуляцию тепла требуется создать селективное покрытие. Вариантов производства несколько:

      Самодельное селективное покрытие коллектора — используют любые черные краски, которые после высыхания оставляют матовую поверхность. Есть решения, когда в качестве абсорбера коллектора применяют непрозрачную темную клеенку. На трубы теплообменника, поверхность банок и бутылок наносят черную эмаль, с матовым эффектом.

  • Специальные абсорбирующие покрытия — можно пойти другим путем, приобретя для коллектора специальную селективную краску. В состав селективных ЛКМ входят полимерные пластификаторы и присадки, обеспечивающие хорошую адгезию, теплостойкость и высокую степень поглощения солнечных лучей.

  • Гелиосистемы, используемые исключительно для нагрева воды летом, вполне могут обойтись окрашиванием абсорбера в черный цвет при помощи обычной краски. Самодельные солнечные коллекторы для отопления дома зимой должны иметь качественное селективное покрытие. Экономить на краске нельзя.

    Самодельная или заводская гелиосистема — что лучше

    Изготовить в домашних условиях солнечный коллектор, способный по техническим характеристикам и показателям сравниться с заводской продукцией нереально. С другой стороны, если требуется просто обеспечить достаточным количество воды для летнего душа, солнечной энергии будет достаточно для работы простейшего самодельного водонагревателя.

    Что касается жидкостных коллекторов, работающих зимой — то даже не все заводские гелиосистемы могут работать при низких температурах. Всесезонные системы, это чаще всего устройства с вакуумными тепловыми трубками, с повышенным КПД, способные работать до температуры –50°С.

    Заводские гелиоколлекторы часто укомплектовываются поворотным механизмом, автоматически подстраивающим угол наклона и направленность панели по сторонам света, в зависимости от расположения Солнца.

    Эффективный солнечный водонагреватель тот, что полностью соответствует поставленным перед ним задачам. Для подогрева воды на 2-3 человек летом, можно обойтись обычным гелиоколлектором, изготовленным своими руками из подручных средств. Для отопления зимой, несмотря на первоначальные затраты, лучше установить заводскую гелиосистему.

    Видеокурс по изготовлению панельного солнечного водонагревателя


    Солнечный коллектор своими руками.

    Постоянный рост стоимости энергоносителей становится основной движущей силой того, что потребитель все чаще задумывается об использовании альтернативных или нетрадиционных способов получения энергии, в первую очередь, тепловой.

    Самым простым и, главное, доступным вариантом для этого является солнечный коллектор, изготовить который можно из подручных или даже ненужных материалов, отслуживших свой срок службы по прямому назначению.

    Гелиоустановки для систем горячего водоснабжения и отопления

    Другой вид оборудования для преобразования энергии солнца – батареи, которые принципиально отличаются от коллекторов тем, что сначала вырабатывают и аккумулируют электрическую энергию, а в дальнейшем ее можно использовать для хозяйственных нужд.

    Но данный вид получения и переработки солнечной энергии требует приобретения дорогостоящего оборудования, главными конструктивными единицами которого являются фотоэлементы, что не всегда оправданно, особенно в регионах с небольшим количеством солнечных дней в году.

    Читайте также:  Угловые шкафы в гостиную (36 фото): современные шкафы-витрины, модульная мебель, идеи дизайна

    В отличие от них, солнечные коллекторы для нагрева воды или отопления дома имеют быструю окупаемость, особенно если изготовить их самостоятельно, так как в этом случае расходы составят лишь стоимость материалов, в число которых дорогие фотоэлементы не входят.

    Использование солнечных коллекторов имеет очевидные преимущества:

    • снижение затрат на отопление и подогрев воды для системы горячего водоснабжения;
    • экологичность данного вида энергии.

    Чаще всего использование коллекторов оправданно для использования в системах отопления небольших коттеджей или организации горячего водоснабжения в летний период в загородном доме или на даче. Оправдан солнечный коллектор для бассейна в качестве устройства для подогрева воды.

    Поэтому для оптимизации расходов на отопление частного дома лучше всего использовать коллекторы совместно с традиционным оборудованием, которое изначально может быть рассчитано для этого, либо имеет возможности для переоборудования или согласования параллельного функционирования двух систем теплоснабжения.

    Также стоит отметить, что, кроме регулярного обслуживания и очистки поверхности коллекторов от грязи и мусора, некоторые из них не предназначены для работы при низких температурах, поэтому перед началом зимы их нужно законсервировать, предварительно слив из системы теплоноситель.

    Основные разновидности солнечных коллекторов

    Солнечный коллектор представляет собой устройство, главной функцией которого является превращение поглощенной солнечной энергии в тепловую с целью ее дальнейшего использования для нагрева теплоносителя в системах отопления, в том числе и в «теплых полах» и ГВС дома.

    Солнечные коллекторы условно можно классифицировать, используя разные критерии. Прежде всего, они делятся по типу теплоносителя на:

    • водяные (жидкостные);
    • воздушные.

    По уровню предельных температур коллекторы бывают:

    • низкотемпературными – предел до 50°C, средний показатель 35-45 °C;
    • среднетемпературными до 80°C;
    • высокотемпературными – более 80°C.

    Последние чаще всего являются промышленными образцами, сделать их своими руками не представляется возможным.

    Конструктивно солнечные нагреватели воды могут быть:

    • плоскими, которые могут быть как воздушными, так и жидкостными;
    • вакуумными, использующими в качестве теплоносителя воду или иной вид жидкости;
    • трубчатыми – бывают и жидкостными, и воздушными;
    • термосифонными , или так называемыми накопительными интегрированными коллекторами, главным отличием которых является способность не только нагревания жидкости, но и поддержания ее температуры определенное время.

    Последний вариант является самым простым как по устройству, так и по сложности изготовления и представляет собой несколько теплоизолированных емкостей с водой, а нагрев жидкости происходит через стеклянные крышки баков.

    Плоские воздушные коллекторы тоже довольно просты и имеют вид специальной панели в виде герметичной коробки с теплоприемником с подключенными воздуховодами, по которым движется и нагревается воздух.

    Для повышения эффективности их работы требуется увеличение их площади, например, за счет использования нескольких панелей в одной системе, а также использование вентилятора.

    Солнечный коллектор своими руками, видео:

    Каким должен быть самодельный солнечный коллектор?

    Из-за невысокой эффективности воздушных коллекторов домашние мастера отдают предпочтение водяным устройствам, которые бывают вакуумными или плоскими, с замкнутой или открытой системой теплообмена .

    Плоский коллектор – довольно простой для самостоятельного изготовления прибор. Состоит из металлического корпуса прямоугольной формы, внутрь которого интегрирован теплоприемник, чаще всего в виде медного или алюминиевого трубчатого змеевика.

    Для лучшего поглощения солнечных лучей (абсорбции) его покрывают селективной краской черного цвета. Снизу обязательно укладывается слой теплоизоляционного материала или резины, а сверху конструкция накрывается крышкой, для изготовления которой используется стекло или, например, поликарбонат, хотя возможно применение и других светопропускающих материалов.

    Принцип работы плоского коллектора довольно простой: поглощенное тепло передается теплоносителю (в данном случае жидкости), циркулирующему по змеевику.

    Герметичность конструкции исключает возможность попадания грязи под стекло на теплоприемник и не допускает выветривания накопленного тепла через естественные щели.

    Наиболее эффективен данный вид коллекторов при эксплуатации в теплое или межсезонное время года, зимой его КПД значительно снижается.

    Проблема потери тепла решена в вакуумном коллекторе. В нем трубки помещаются в светопрозрачные стеклянные колбы, из которых предварительно выкачивается воздух. Трубки в этой конструкции обязательно имеют абсорбционное покрытие и дополнительно заполняются хладагентом.

    Непосредственно трубки соединяются своими концами с магистралью, по которой движется теплоноситель. Под воздействием солнечных лучей хладагент закипает и превращается в пар, который, по законам физики, поднимается вверх по трубке и при контакте с теплоносителем остужается, отдавая накопленное тепло.

    Именно из-за такой особенности вакуумные коллекторы эффективны и в зимнее время, при минусовых температурах, хотя их КПД может несколько снизиться за счет уменьшения светового дня и увеличения пасмурности.

    Вариантом вакуумного коллектора можно считать и конструкции, в которых трубки сразу заполняются теплоносителем. Но они обладают одним существенным недостатком – сложностью проведения ремонтных работ. В этом случае, если из строя вышла какая-либо из трубок, потребуется полная замена всей конструкции.

    Какими бывают солнечные коллекторы, собранные самостоятельно?

    Прежде чем приступить к самостоятельному изготовлению гелиоустановки, потребуется заранее подготовить некоторые материалы. Список их в зависимости от выбранного вида и типа может отличаться, но в любом случае потребуются:

    • готовый змеевик или металлические трубки, предпочтительнее из меди или стали;
    • материал для теплоизоляции конструкции и накопительного бака с водой;
    • стекло или другой светопрозрачный материал. Например, можно сделать солнечный коллектор из поликарбоната своими руками, который обладает некоторыми преимуществами перед стеклянными образцами: имеет меньший вес, что актуально при установке на крыше дома, и более устойчив перед механическими повреждениями. Но при этом по светопропускной способности не уступает стеклу, к которому предъявляются повышенные требования по прочности (как правило, рекомендуется изготавливать крышку из ударопрочного материала), а это значит, что и по цене поликарбонат имеет перед ним преимущества;
    • лист OSB, оргалита или металла;
    • материал для изготовления каркаса (подойдут различные пиломатериалы, в том числе даже рамы старых деревянных окон);
    • бак для накопительной емкости;
    • хомуты, заглушки и другие изделия для монтажа и крепления установки;
    • краска или другой химический материал для нанесения селективного покрытия для теплоприемника.
    Читайте также:  Стеклохолст под покраску: технология армирования поверхности

    Самым главным элементом солнечного коллектора является теплоприемник, или абсорбер, который при самостоятельном изготовлении установки может иметь самый разнообразный, в некоторых случаях даже экзотический внешний вид:

    1. самый простой и доступный вариант — использовать для него змеевик вышедшего из строя холодильника ;
    2. коллектор можно изготовить и из обычного полипропиленового шланга , но такой вариант более подходящим является в условиях дачи, так как вполне способен обеспечить горячей водой в летнее время.

    Для того чтобы гелиоустановка могла быть использована в качестве альтернативного источника ГВС дома или отопления, ее конструкция, хоть и не отличающаяся особой сложностью, требует большего внимания и, главное, трудозатрат при изготовлении.

    Коллектор Станилова: «солнечное отопление» в доме

    Установки для отопления дома или решения проблем горячего водоснабжения (полного или частичного), собираемые на основе чертежей изобретателя из Болгарии С. Станилова, относятся к универсальным конструкциям, работа которых основана на парниковом эффекте.

    Поэтому солнечные лучи, попадая в замкнутое и герметично изолированное пространство, не имеют выхода, что и порождает термосифонный эффект, при котором нагретая жидкость в трубках начинает свое движение вверх, вытесняя при этом жидкость с более низкой температурой к месту нагрева.

    Представляет собой конструкцию трубчатого типа, заключенную в специальную деревянную раму. Как правило, одновременно применяется два коллектора в союзе с накопителем и аванкамерой.

    Для изготовления радиатора-коллектора используются стальные трубки, которые обязательно соединяются сваркой. Поэтому применение медных или алюминиевых изделий, особенно при изготовлении конструкции своими руками, представляется проблематичным.

    Для соединения коллектора с накопительной емкостью рекомендуется использовать также стальные трубы диаметром от 3 / 4 до 1 дюйма.

    Элементы установки и особенности монтажа

    Для изготовления солнечного водонагревателя своими руками также потребуются:

    1. деревянная рама;
    2. стекло для изготовления светопрозрачной крышки;
    3. оргалит или металлический лист для дна коллектора, который впоследствии обязательно потребуется теплоизолировать;
    4. усилитель для днища, в роли которого можно использовать брус с размерами не более 30?50 мм;
    5. металлические трубки, из которых будет свариваться радиатор коллектора из расчета, что для изготовления одного требуется в среднем 15 единиц при длине 1,60 м;
    6. теплоотражатель, для изготовления которого вполне пригоден оцинкованный лист;
    7. соединительные муфты и хомуты;
    8. теплоизоляционные материалы (пенопласт, минеральная вата и любые другие).

    Потребуется и накопительный бак, для которого в зависимости от потребностей и мощности самого коллектора используются емкости от 150 до 400 л . В принципе, можно установить не один бак, а несколько, суммарным объемом соответствующих расчетному.

    Функции аванкамеры, составного элемента данной конструкции, сводятся к созданию избыточного давления, составляющего не менее 80-100 мм рт. ст . Она представляет собой емкость объемом 30-40 л , оснащенную поплавковым клапаном, обеспечивающим ее работу в автономном режиме.

    При монтаже аванкамеры обязательно должно соблюдаться условие, при котором уровень жидкости в ней превышал бы уровень воды в накопителе на 0,8-1,1 м , кроме того, располагаться они должны в непосредственной близости друг от друга.

    Короб, в котором будет располагаться коллектор, должен обязательно теплоизолироваться, а для уменьшения теплопотерь внешние его стороны рекомендуется окрашивать в белый цвет, стеклянная крышка обязательно должна быть герметичной.

    Как работает солнечный коллектор?

    Установку коллектора предпочтительнее выполнять на южной стороне скатной крыши, на плоской кровле его следует монтировать под углом от 35° до 45° . Далее можно приступать к заполнению системы.

    После этого аванкамеру нужно соединить с водопроводным вводом и открыть кран для снижения уровня воды. Как только сработает поплавковый клапан, расходный кран закрывают. Нагретая вода поступает в верхнюю часть накопителя, откуда она уже может отбираться, а ее место заполняет новая порция холодной.

    Регулирует этот процесс поплавок, который и запускает процесс долива воды в систему, как только уровень в аванкамере снизится. Для того чтобы исключить возможность обратной отдачи тепла используется вентиль, который следует перекрывать ночью или в пасмурные дни.

    Непосредственно к сантехническим приборам вода подключается с обязательным использованием смесителей , так как пиковые значения температур могут достигать 70 °C и даже выше.

    Селективное покрытие для солнечных коллекторов

    При самостоятельном изготовлении коллектора для нанесения селективного слоя можно приобрести специальную краску, но вполне подходит и использование других химических материалов, наносить которые следует тонким слоем:

    • черный хром;
    • оксиды металлов и, прежде всего, оксид меди;
    • газовая сажа;
    • черная краска, которую для большего эффекта лучше наносить на какой-либо утеплитель;
    • можно выполнить так называемое «воронение» стали , при котором создается зеркальная поверхность.

    Но следует учитывать, что не все виды покрытия обладают одинаковым коэффициентом селективности, то есть у них разное поглощение солнечной энергии и способность к ее теплоотдаче.

    Когда выбирается селективная краска для солнечных коллекторов, то нужно ориентироваться на показатели поглощения солнечной энергии от 8,5 до 16 , которые являются оптимальными.

    Солнечный коллектор для отопления частного дома, видео:

    Как правильно сделать расчет солнечного коллектора?

    Чаще всего при изготовлении солнечных коллекторов своими руками расчет их мощности и производительности осуществляется эмпирическим путем.

    Но учитывать общие правила и особенности данных установок необходимо.

    В первую очередь следует обратить внимание на количество солнечных дней (часов) в данной конкретной местности. Данный параметр влияет как на КПД установки, так и определяет конструктивные особенности выбранной модели.

    Читайте также:  Чем покрасить кирпичную печь

    Далее, в зависимости от того, для каких целей планируется использовать коллектор (для отопления дома или организации горячего водоснабжения или того и другого одновременно), определяются максимальные потребности.

    Потребность в горячей воде можно рассчитать, используя для этого данные о количестве проживающих в доме людей, хотя при наличии водомерного счетчика удастся получить более точные показатели.

    А расчеты по затратам на отопление будут зависеть от климатического региона, теплоизоляции дома и других факторов, но можно использовать и общие значения, по которым для обогрева 10 м 2 площади потребуется 1 кВт мощности установки.

    Но для того чтобы эффективность от использования гелиоустановок была максимальной, их часто интегрируют в общую домовую систему отопления и/или горячего водоснабжения. В этом случае, в те месяцы или дни, когда КПД коллектора будет понижаться, недостаток тепла можно компенсировать из традиционных источников.

    Солнечный коллектор своими руками (21 фото + описание изготовления)

    Сделал самодельный солнечный коллектор: подробные фото с размерами и описание изготовления солнечного водонагревателя своими руками.

    Приветствую всех! Поставил бассейн на дачном участке и возникла необходимость в подогреве воды для бассейна и собственных нужд.

    Изучив всевозможные варианты, в результате было принято решение создать солнечный коллектор своими руками для подогрева бассейна.

    Принцип действия солнечного коллектора

    По плану действие солнечного коллектора должно было осуществляться следующим образом: забор воды из бассейна происходит при помощи электрического насоса, опущенного в воду. Далее вода поступает в солнечный коллектор, созданный самостоятельно по змеевику из труб, который установлен под наклоном на постаменте. В процессе циркуляции по черному змеевику вода греется под воздействием ярких лучей солнца и поступает ко дну бассейна.

    Конструкция солнечного коллектора

    Наш коллектор, созданный самостоятельно, будет включать в себя 42 полудюймовые трубки (по 225 см каждая). Располагаются они горизонтально.
    В общей сложности длина трубок составляет около 120 м (длина соединительных колен учитывается).

    Необходимо сделать плоский короб черного цвета (228 х 190 х 10 см), а затем укрепить его на каркас. Окрашивание короба и каркаса следует выполнить черным антисептиком. С целью предотвращения утраты драгоценного тепла короб следует закрыть простым стеклом. Трубки коллектора также окрашиваются пульверизатор. Для этого подойдет обычная нитрокраска черного цвета.

    Планируемая мощность коллектора зависит от интенсивности света и предполагается в пределах 1,6 — 2 кВт.

    Схема поможет разобраться в системе подогрева воды:


    В процессе деятельности мы кое-что изменили в схеме, о чем поговорим позже.


    По плану коллектор должен быть установлен в солнечной местности, в нескольких метрах от бассейна. Тщательный выбор места был обусловлен тем, чтобы в будущем избежать потери тепла в магистралях и насос мог справиться с прокачкой воды по всей длине трубопровода солнечного коллектора на даче.
    Также необходимо было учесть оптимальный наклон солнечного коллектора относительно горизонта.
    При помощи программы 3D MAX (удобная штука) был произведен расчет и создано изображение нашего будущего солнечного коллектора.

    Помимо этого были выполнены расчеты нужных деталей и составляющих для создания конструкции. Выбор трубы остановился на металлопласте. Этот материал оптимально подходит для данной цели, поскольку к его поверхности отлично пристает нитрокраска черного цвета, которой мы планируем покрасить трубки солнечного коллектора своими руками.

    Смета, составленная по результатам подготовительных работ оказалась внушительной по объему.

    Подготовка к самостоятельному созданию солнечного коллектора по нагреву воды

    Ближе к осени началась подготовка и закупка необходимых материалов. Поскольку приобретение материалов попало на холодное время года, частичная сборка солнечного коллектора своими руками выполнялась в квартире. Скручивались детали вручную, а соединения уплотнялись при помощи специальной нити.
    Наглядно вы можете это увидеть на фото:

    Также, в процессе подготовительных работ был подготовлен чертеж рамы (короба) и подставки для солнечного коллектора. Чертеж основывался на том, что для рамы нашего коллектора понадобится два листа фанеры (стандартных) размером 1,52 х 1,52м и толщиной 10мм. Один из листов не раскраивается и используется в первоначальном размере, а второй необходимо разрезать на 5 кусков: 4 — 76 х 38см, 1 — 152 -76см.

    Помимо это был куплен брус длинной 6 м, сечением 5 х 5хсм. Он понадобится для создания «стола» каркаса рамы и каркаса подставки.

    В общей сложности длинна бруса — 60м (или 10 шт. по 6 м). В соответствии со сметой был куплен антисептик, который защитит раму под солнечный коллектор и каркас-подставку. Черный антисептик был приобретен с целью покрытия площади рамы-стола.

    Монтаж коллектора на дачном участке

    Каркас нашего солнечного коллектора планировалось установить наклонно в сторону юга. Для площадки была приобретена тротуарная плитка размерами 40 х 40см. Подготовка места включила в себя выравнивание, покрытие рубероидом, сверху насыпан щебень. На отстаивание и утрамбовку щебня необходимо время. В нашем случае это заняло около трех месяцев. После этого, сверху, площадка была снова застелена рубероидом и уже на него выложена тротуарная плитка (24 шт.).

    Целесообразным будет предусмотреть обычную вилку с розеткой. Таким образом вы сможете отключать насос во время купания в бассейне и обезопасите себя от поражения электрическим током.

    Подготовка каркаса-подставки для коллектора

    Согласно чертежа мы начали собирать каркас-подставку. Следующим шагом была покраска наклонного стола конструкции сверху антисептиком черного цвета. С задней стороны мы покрыли поверхность бесцветной Тиккуриллой.

    Следующим шагом стало изготовление рамы «стола» солнечного коллектора. Подготовленные куски бруса были скреплены стальными уголками (5 х5см) и шурупами. Фанера, нарезанная на необходимые части была также прикреплена к раме шурупами. В результате мы получили ровную площадку (стол) для установки трубок коллектора.

    Читайте также:  Сухая стяжка Кнауф: особенности и характеристики

    Следует отметить, что конструкция получилась достаточно тяжелая — 30 — 35 кг. Каркас-подставка должна быть прочной и устойчивой под воздействием ветров, весом снега и должна выдержать вес рамы, змеевика с водой и стекла. Для того, чтобы конструкция была более устойчивой, мы соорудили специальные колья из металла, которые смогут удержать каркас-подставку.

    Сборка солнечного коллектора

    Для начала мы подготовили металлопласт, нарезав части необходимой длины. Далее началась сборка змеевика (снизу вверх).
    Белый пластик и крепления мы окрасили в черный цвет баллончиками. В общей сложности мы постарались все покрыть черной краской (трубки, крепления).
    После сборки основной части конструкции, мы подключили систему непосредственно к насосу и провели испытания. Протечек обнаружено не было, да и вода поступала достаточно уверенно.

    Наша основная цель — получить и правильно использовать максимальное тепло от солнца. Одну из главных ролей при этом играет экран защиты. Благодаря этому приспособлению в коробе аккумулируется теплая температура, а затем воздух направляется на подогрев.
    В нашем случае для этой цели по краям стола был использован бордюр с покрытием антисептиком черного цвета (из вагонки).

    Также мы сделали из алюминиевого уголка раму для установки стекла.

    В результате выполнения указанных действий мы смогли снять размеры для стекла. Нарезка и установка стекла не заняла много времени. Для поддержания краев стекла был применен алюминиевый уголок. Середина держалась на центральном узле.

    В результате мы получили прочную, герметичную конструкцию. Конденсат внутри замечен не был. Собирался он только снаружи в утреннее время.

    Если говорить об изменениях схемы, то во-первых, в процессе работы обратный клапан бассейна мы заменили на простой краник. Данной заменой мы постарались облегчить работу насоса. С клапаном насосу придется прикладывать больше сил в процессе работы.

    Во-вторых, была выполнена установка двух дополнительных кранов. Следует отметить, что кран, при помощи которого возможно перекрывать магистраль, является очень полезным приспособлением на случаи длительного отсутствия.

    Проверка работы коллектора

    Испытательные работы осуществлялись с использованием специального термометра. При интенсивном солнце показатель температуры воды на выходе был очень высоким (обжигала руку).

    В соответствии с показателями измерений после 7 — 8 часовой работы насоса температура воды в бассейне нагрелась до 32 0 С. В дальнейшем мы поддерживали ее в пределах 32 0 С периодически подключая насос. Следует отметить, что в процессе циркуляции воды происходит обогащение кислородом.

    Цель достигнута — вода моего бассейна стала теплой и комфортной.

    Возможно наш опыт пригодится вам для создания автономного источника теплоснабжения для вашей дачи.

    Солнечный коллектор своими руками. Как сделать солнечный коллектор своими руками?

    Солнечные коллекторы – это отличный способ сэкономить энергоресурсы. Бесплатная солнечная энергия сможет как минимум 6-7 месяцев в году обеспечивать теплую воду для хозяйственных нужд. А в остальные месяцы – еще и помогать системе отопления.

    Но самое главное, что простой солнечный коллектор (в отличии, например, от солнечных панелей) можно изготовить самостоятельно. Для этого вам понадобятся материалы и инструменты, которые можно купить в большинстве строительных магазинов. В некоторых случаях будет достаточно даже того, что найдется в обычном гараже.

    Представленная ниже технология сборки солнечного нагревателя использовалась в проекте “Включи солнце – живи комфортно”. Она была разработана специально для проекта немецкой компанией Solar Partner Sued, которая профессионально занимается продажей, монтажом и сервисом солнечных коллекторов и фотоэлектрических систем.

    Главная идея – все должно получиться дешево и сердито. Для изготовления коллектора используются довольно простые и распространенные материалы, но его эффективность получается вполне приемлемого уровня. Она ниже, чем у фабричных моделей, но разница в цене полностью компенсирует этот недостаток.

    Существуют различные типы солнечных водонагревателей, но все они основаны на простом принципе: темная поверхность «впитывает» солнечную энергию, потом это тепло передается теплоносителю (воде). Простейшие модели могут быть построены из доступных материалов и не требуют насосов или иного электрооборудования. Эффективный солнечный коллектор может использоваться даже в зимнее время благодаря применению незамерзающих жидкостей – антифризов.

    Описанная система солнечного коллектора является пассивной и не зависит от электроэнергии. Она обходится без электрических приборов. Горячая жидкость перемещается между коллектором и баком по принципу конвекции, благодаря простому правилу: нагретая жидкость всегда поднимается вверх.

    Принцип работы такого солнечного коллектора заключается в следующем:

    • Солнце нагревает жидкость в коллекторе
    • Нагретая жидкость поднимается по коллектору и трубе в бак-аккумулятор
    • Когда горячая жидкость поступает в теплообменник, установленный в бак с водой, тепло передается от теплообменника воде
    • Жидкость в теплообменнике, охлаждаясь, перемещается вниз по спирали и поступает из отверстия в нижней части бака обратно в коллектор
    • Вода, нагретая в баке, аккумулируется в верхней части бака
    • Холодная вода из водопроводной сети / резервуара поступает в нижнюю часть бака
    • Нагретая вода отбирается через выходное отверстие в верхней части бака.

    Пока на коллектор светит солнце, жидкость в трубах абсорбера нагревается, перемещается в бак и таким образом постоянно циркулирует. Этот процесс обеспечивает нагрев воды в баке всего за несколько часов при интенсивном солнечном излучении.

    Основной элемент коллектора отопления – абсорбер. Он состоит из металлического листа, приваренного к металлическим трубам. Несколько труб устанавливаются вертикально и привариваются к двум трубам большего диаметра, расположенных горизонтально. Эти толстые трубы для входа и выхода жидкости должны быть расположены параллельно друг другу. А входное отверстие для жидкости (нижняя часть абсорбера) и выходное отверстие (верхняя часть абсорбера) должны располагаться с разных сторон панели (диагонально). Для соединения в толстых трубах необходимо просверлить отверстия под диаметр вертикальных труб.

    Читайте также:  Столешница для ванной из гипсокартона может быть многоуровневой или одинарной

    Для лучшей передачи тепла от металлической пластины к трубам очень важно обеспечить максимальный контакт пластины с трубами. Сварка должна быть вдоль всего элемента. Важно, чтобы металлический лист и трубы плотно прилегали друг к другу.

    Абсорбер укладывается в деревянную раму и накрывается стеклом, которое защищает коллектор и создает внутри эффект теплицы. Используется обычное оконное стекло. Оптимальная толщина – 4 мм, при этом сохраняется хорошее соотношение надежности и веса. Желательно нужную площадь стекла разделять на несколько частей. Так удобнее и безопаснее работать с ним.

    Использование нескольких слоев стекла или стеклопакета даст прирост эффективности, но увеличит вес конструкции и стоимость системы.

    Солнечные лучи проходят через стекло и нагревают коллектор, а остекление предотвращает утечку тепла. Стекло также препятствует движению воздуха в абсорбере без него коллектор быстро терял бы тепло из-за ветра, дождя, снега или низких внешних температур.

    Раму следует обработать антисептиком и краской для наружных работ.

    В корпусе делаются сквозные отверстия для подачи холодной и отвода нагретой жидкости из коллектора.

    Сам абсорбер красят жаростойким покрытием. Обычные черные краски при высоких температурах начинают шелушиться или испаряться, что приводит к потемнению стекла. Краска должна полностью высохнуть, прежде чем вы закрепите стеклянное покрытие (для предотвращения конденсации).

    Под абсорбером закладывается утеплитель. Чаще всего используется минеральная вата. Главное, чтобы он выдерживал довольно высокие температуры в течение лета (иногда более 200 градусов).

    Снизу раму закрывают ОСБ плитой, фанерой, досками и т.п. Основное требование к этому этапу – убедиться, что низ коллектора надежно защищен от попадания влаги внутрь.

    Для закрепления стекла в раме делают пазы, или крепят планки по внутренней стороне рамы. При расчете размеров рамы следует учитывать, что при изменении погоды (температуры, влажности) в течение года ее конфигурация будет немного меняться. Поэтому на каждой стороне рамы оставляют несколько миллиметров запаса.

    На паз или планку крепится резиновый оконный уплотнитель (D- или Е-образный). На него кладется стекло, на которое таким же образом наносится уплотнитель. Сверху это все закрепляется оцинкованной жестью. Таким образом, стекло надежно закреплено в раме, уплотнитель защищает абсорбер от холода и влаги, а именно стекло не повредится, когда деревянная рама будет “дышать”.

    Стыки между листами стекла изолируются уплотнителем или силиконом.

    Чтобы организовать солнечное отопление дома понадобиться накопительный бак. Здесь хранится нагретая коллектором вода, поэтому стоит позаботиться о его термоизоляции.

    В качестве бака можно использовать:

    • неработающие электрические бойлеры
    • различные баллоны для газов
    • бочки для пищевого использования

    Главное – помнить, что в герметичном баке будет создаваться давление в зависимости от давления водопроводной системы, к которой он будет подключен. Не каждая емкость способна выдерживать давление в несколько атмосфер.

    В баке делают отверстия для входа и выхода теплообменника, ввода холодной воды, и забора нагретой.

    В баке размещается спиральный теплообменник. Для него используют медь, нержавеющую сталь или пластик. Нагретая через теплообменник вода будет подниматься вверх, поэтому его следует поместить в нижней части бака.

    Коллектор соединяется с баком с помощью труб (например, металлопластиковых или пластиковых), проведенных от коллектора к баку через теплообменник и обратно в коллектор. Здесь очень важно предотвратить утечку тепла: путь от бака до потребителя должен быть максимально коротким, и трубы должны быть очень хорошо изолированными.

    Расширительный бачок – это очень важный элемент системы. Он представляет собой открытый резервуар, расположенный в крайней верхней точке контура циркуляции жидкости. Для расширительного бачка можно использовать как металлическую, так и пластиковую емкость. С ее помощью контролируется давление в коллекторе (из-за того, что жидкость от нагрева расширяется, могут треснуть трубы). Для снижения потерь тепла бачок также необходимо изолировать. Если в системе присутствует воздух, то он также может выходить через бачок. Через расширительный бачок происходит также наполнения коллектора жидкостью.

    Больше подробностей о создании дешевого солнечного коллектора, перечень необходимых материалов и правила установки нагревателя можно узнать, загрузив Практическое руководство по сооружению солнечных коллекторов для горячей воды.

    А вы что думаете по этому поводу? Дайте нам знать – напишите в комментариях!

    • Назад
    • Вперёд

    Понравилась статья? Поделитесь ею и будет вам счастье!

    Делаем солнечный коллектор своими руками

    Концепция энергетически эффективного дома предполагает создание, внедрение и эксплуатацию возобновляемых источников энергии. Все большее распространение стали получать собранные солнечный коллектор своими руками, которые не так давно встречались крайне редко.

    Постоянное совершенствование гелиосистем, существенное падение цен на них привило к еще большему появлению их в обыденной жизни. Стоимость заводских моделей сегодня соизмерима с затратами, необходимыми на обустройство классической системы отопления. Однако такую технологию может сделать каждый самостоятельно.

    • 1 Принцип работы солнечного коллектора
    • 2 Вводное видео об устройстве водонагревателя
    • 3 Виды солнечных коллекторов
      • 3.1 Вакуумные солнечные коллекторы
      • 3.2 Плоские солнечные коллекторы
    • 4 Чертежи конструкций
    • 5 Солнечный коллектор из змеевика холодильника

    Принцип работы солнечного коллектора

    Если кратко описать принцип работы коллектора – он необходим для захвата солнечной тепловой энергии. В дальнейшем она концентрируется и используется человеком.

    Коллекторная система состоит из следующих составляющих:

    • Тепловой аккумулятор (обычная емкость под жидкость)
    • Теплообменный контур
    • Непосредственно коллектор

    Жидкий или газообразный теплоноситель циркулирует по коллектору. Полученная энергия нагревает его и, посредством смонтированного бака-аккумулятора, передает тепло воде.

    Нагретая жидкость хранится в баке до того, покуда она не будет использована. Сфера ее применения очень широка – от обычных хозяйственных нужд до отопления дома. Чтобы вода быстро не остывала, необходимо качественно тепло изолировать емкость.

    Циркуляцию воды в коллекторе делают одним из двух способов: естественным или принудительным способом. В баке-аккумуляторе может монтироваться дополнительный элемент, нагревающий жидкость, который будет включаться при достижении низких температур окружающей среды и поддерживать температуру воды, например, зимой, когда солнцестояние непродолжительное.

    Читайте также:  Стропильная система двухскатной крыши франтон способы завязывания

    Вводное видео об устройстве водонагревателя

    Виды солнечных коллекторов

    Планируя солнечный коллектор своими руками и установить в доме, необходимо определиться с типом конструкции:

    • Воздушный
    • Вакуумный

    Модели, у которых теплоносителем является воздух, используются крайне редко. Это связано со свойствами жидкости — тепло она проводит значительно лучше, чем газ. Воздушные коллекторы чаще делают плоской формы, чтобы воздух, контактируя с поглощающим устройством, естественным образом нагревался.

    схема воздушного солнечного коллектора

    Вакуумные солнечные коллекторы

    Вакуумные модели самые сложные. Вместо коробки, которая покрывается стеклом, у него используются большие по габаритам трубки из стекла. Внутри них имеются трубочки с меньшим диаметром, в которых находится абсорбер, собирающий тепловую энергию. Между трубками – вакуум, он выполняет роль теплоизолятора.

    схема вакумного солнечного коллектора

    Плоские солнечные коллекторы

    Самым распространенным является плоский солнечный коллектор, внутри которого располагается специальный абсорбирующий слой, помещенный в стеклянную коробку. Он соединяется с трубками, по которым перемещается жидкий теплоноситель (чаще пропилен-гликоль).

    схема плоского солнечного коллектора

    Но решаясь смастерить солнечный коллектор своими руками, необходимо понимать, что сделать столь сложные устройства невозможно, аналогичные промышленным. К тому же, их КПД будет значительно ниже, меньше эксплуатационный срок, но и материальные вложения тоже.

    Хотите узнать больше про альтернативное отопление дома ?

    Читайте так же, о том как сделать отопление дома на солнечных батареях

    Чертежи конструкций

    Приступаем к работе

    Прежде чем сооружать солнечный коллектор, необходимо произвести соответствующие расчеты и определить, как много энергии он должен производить. Но от самодельной установки ждать высокого КПД не стоит. Сориентировавшись, что его будет достаточно – можно приступать.

    Работу можно поделить на несколько основных этапов:

    1. Изготовить короб
    2. Изготовить радиатор или теплообменник
    3. Изготовить аванкамеру и накопитель
    4. Собрать коллектор

    Чтобы изготовить коробку под солнечный коллектор своими руками, следует заготовить обрезную доску толщиной 25-35 мм и в ширину 100-130 мм. Дно ее следует сделать текстолитовым, оснастив его ребрами. Оно также должно быть хорошо теплоизолированное при помощи пенопласта (но предпочтение отдают минеральной вате), накрытого оцинкованным листом.

    Еще 4 эффективных способа альтернативного отопления дома

    О которых вы можете узнать в нашей следующей статье

    Подготовив короб, настает пора мастерить теплообменник. Следует придерживаться инструкции:

    1. Необходимо подготовить 15 тонкостенных металлических трубок длиной 160 см и две дюймовые трубы длиной 70 см
    2. В обоих утолщенных трубках сверлятся отверстия диаметра меньших трубок, в которые они будут устанавливаться. При этом нужно следить за тем, чтоб они были по одной стороне соосны, максимальный шаг между ними 4.5 см
    3. Следующий этап – все трубки нужно собрать в единую конструкцию и надежно сварить
    4. Теплообменник монтируется на лист оцинковки (ранее прикрепленный к коробу) и фиксируется при помощи стальных хомутов (можно сделать металлические зажимы)
    5. Днище короба рекомендуют покрасить в темный цвет (например, черный) – он будет лучше поглощать солнечное тепло, но чтобы снизить тепловые потери, внешние элементы красятся белым
    6. Завершить монтаж коллектора необходимо установкой покровного стекла около стенок, при этом не забыв о надежной герметизации стыков
    7. Между трубками и стеклом оставляется расстояние, равное 10-12 мм

    Остается соорудить накопитель под солнечный коллектор. Его роль может исполнять герметичная емкость, объем которой варьируется около 150-400 л. Если найти одну такую бочку не удается, можно сварить между собой несколько небольших.

    Как и коллектор, накопительный бак основательно изолируют от потерь тепла. Остается изготовить аванкамеру – небольшой сосуд объемом 35-40 л. Он должен оснащаться падающим воду устройством (шарнирным краном).

    Остается самый ответственный и важный этап – собрать коллектор воедино. Сделать это можно таким образом:

    1. Вначале необходимо установить аванкамеру и накопитель. Необходимо следить, чтоб уровень жидкости в последнем был на 0.8 м ниже, чем в аванкамере. Так как воды в таких устройствах может собираться немало, необходимо продумать, каким образом они будут надежно перекрываться
    2. Коллектор размещается на крыше дома. Исходя из практики, рекомендуется делать это на южной стороне, наклонив установку под углом 35-40 градусов к горизонту
    3. Но нужно учитывать, что между накопителем и теплообменником расстояние не должно превышать 0.5-0.7 м, иначе потери будут слишком существенны
    4. В конце должна получиться следующая последовательность: аванкамера обязана располагаться выше накопителя, последний – выше коллектора

    Наступает самый ответственный этап – необходимо соединить все составляющие воедино и подключить к готовой системе водопроводную сеть. Для этого потребуется посетить магазин сантехники и приобрести необходимые фитинги, переходники, сгоны и прочую запорную арматуру. Высоконапорные участки рекомендуют соединять трубой диаметром 0.5 дюйма, низконапорные – 1 дюйм.

    Введение в эксплуатацию выполняется следующим образом:

    1. Установка заполняется водой посредством нижнего дренажного отверстия
    2. Подсоединяется аванкамера и регулируются уровни жидкости
    3. Необходимо пройтись вдоль системы и проверить, чтобы не было утечек
    4. Все готово к повседневной эксплуатации

    Солнечный коллектор из змеевика холодильника

    Солнечный коллектор своими руками можно смастерить из обычного змеевика, снятого со старого холодильника. Для работы потребуется подготовить:

    1. Непосредственно змеевик
    2. Рейки и фольга для каркаса
    3. Бочка или бак для воды
    4. Резиновый коврик
    5. Запорная арматура (вентили, труб и т. д.)
    6. Стекло

    Промыв змеевик от фреона, необходимо сбить вокруг реечный каркас. Его точные размеры будут зависеть от размера рабочего узла, который был демонтирован с холодильника. Коврик необходимо подогнать под рейки, среди которых змеевик должен свободно располагаться.

    На резиновый коврик (дно каркаса) укладывается фольгирующий слой. Затем змеевик фиксируют при помощи винтовых хомутов. В стенках проделываются отверстия, через которые будут проходить трубы. Повысить продуктивность можно за счет герметизации стыков герметикам.

    Дно также укрепляется рейками. Сверху монтируется стекло и фиксируют при помощи скотча. Чтобы не волноваться, можно вырезать несколько алюминиевых пластинок и сделать из них прижимы.

    Видео о техническом устройстве и испытании солнечного коллектора:

    Такое сооружение, как солнечный коллектор своими руками, может существенно повысить уровень комфорта в загородном доме или на даче. Пусть незначительно, но оно снижает траты на потребляемую энергию, вырабатываемую классическими источниками энергии.

    Пеноплекс — применяйте правильно

    Под названием Пеноплекс скрывается обычный экструдированный пенополистирол, который, как известно, имеет свою область применения. Но рекламный прессинг торговой марки настолько большой, что многие уже считают само собой разумеющимся применить Пеноплекс повсюду. И в этом кроется серьезная ошибка, — во первых, значительные деньги тратятся без всякой пользы, во вторых, наносится вред конструкциям дома. Но обо всем по порядку…

    Расхожая шутка о неправильном использовании «Сникерса и Тампакса», из-за отсутствия понимания того, что скрывается под этими названиями, точно описывает и ситуацию с Пеноплексом. Слепое следование рекламным буклетам приводит к неоднозначным ситуациям.

    Выгодно ли применять

    Нормативы рекомендуют частникам создавать экономически целесообразное утепление, чтобы оно окупалось при существующих ценах на энергоносители за определенный промежуток времени — до 12 лет. Поэтому в проектной документации на частные дома и квартиры закладываются теплоизоляторы достаточно надежные (долговечные), но умеренной цены, — утепление должно быть выгодным для владельца.

    В проектах не встретишь слишком дорогого пеностекла. Но зато широко используется дешевый вспененный полистирол (пенопласт) высокой плотности.
    В проектах домов экструдированный пенополистирол предусматривается строго по назначению.

    Никто не будет закладывать экструдированный пенополистирол там, где может применяться пенопласт, который значительно дешевле. Иначе смысл утепления теряется, — оно просто не окупится в нормальные сроки, а нарушение норматива грозит лишением лицензии на проектирование, например.

    Чем особенным отличается экструдированный пенополистирол

    Производство Пеноплекса выполнено методом экструзии, который впервые был применен в США полвека назад. Полистирол вспенивается химической реакцией при большом давлении и при высокой температуре. В результате, в материале образуются совсем маленькие ячейки — до 0,2 миллиметров, с почти одинаковыми размерами. А также полностью замкнутые, в отличие от пенопласта.

    Экструдированный полистирол приобретает следующие отличительные свойства:

    • Повышенную прочность на сжатие — от 0,2МПа до 0,6Мпа в зависимости от плотности, которая может находиться в пределах от 25 кг/м куб. до 50 кг/м куб., наиболее плотные можно укладывать под покрытием автомобильной дорожки.
    • Практически нулевое водопоглощение, — можно применять в грунте без защиты.
    • Почти полное отсутствие проницаемости для водяного пара — на стене из любого обычного строительного материала, слой экструдированного пенополистирола толщиной от 2 см, окажется пароизолятором.

    Где и когда правильно применить этот теплоизоляционный материал?

    Размеры листов, виды

    Пеноплекс выпускается под названиями «Стена», «Фундамент», «Кровля», «Дорога», «Универсальный»… От названия к названию меняется в основном плотность от 25 кг/м куб. для «Стена» до 40 кг/м куб. для «Дорога» и соответственно прочность материала.

    Стандартная плотность обычного экструдированного пенополистирола для широкого применния составляет 35 кг/м куб. Но в случае с Пеноплекс, например типа «Универсальный», даются несколько разноречивые данные — плотность от 28 до 34 кг/м куб.

    Очевидно стремление экономить при производстве, — предлагается более непрочный, легкий материал с несколько увеличенным водопоглощеннием Т.е. как бы «Эконом-Лайт-экструдированный пенополистирол».

    Но, вероятно, что и у других производителей продукция может быть «облегченной» или даже не соответствовать заявленным техническим характеристикам…

    Размеры листа утеплителя Пеноплекс обычно составляют 600х1200 мм. Толщина варьируется, может быть 20, 30, 40, 50, 60, 80, 100 (мм).

    Ошибки в применении

    Типичная ошибка применения Пеноплекса связаны скорее с верой в некие «чудодейственные» свойства материала, или с обычным нежеланием вникать в вопросы.

    Кочующие бригады утеплительщиков навязывают свое мнение по теплоизоляции ища свою выгоду. Нередко навязывают Пеноплекс, как более дорогой материал для утепления стен, полов, кровли, вместо подходящих по экономической или по технической целесообразности пенопласта или минеральной ваты.

    А чтобы хозяевам не показалось слишком дорого, просто применяют для утепления стен листы толщиной 20 мм или 30 мм.

    Эффект теплосбережения, от столь тонкого слоя минимальный, или даже практически не заметный. А значительные затраты на приклейку и штукатурку по технологии Мокрый фасад являются выброшенными зря деньгами.

    Ущерб

    Таким образом теплоизолятор экструдированный пенополистирол наклеенный на большую площадь стен приносит значительный ущерб владельцам.

    К тому же пароизоляцию почти безболезненно вытерпит только весьма плотный бетон. Кирпич же и пористые материалы легко приобретут повышенную влажность, такую же как внутри помещения, что не слишком полезно. А в случаях некачественной обклейки, по краям площади, каких-то утечек пара сквозь наружную скорлупу вполне возможно и замачивание стены кондесатом образующимся на границе стены и утеплителя.

    Также в стропильных системах, в деревянных перекрытиях, в контакте с деревом, специалисты в основном рекомендуют применять паропроницаемые утеплители, проветриваемые снаружи, обеспечивающие долговечность конструкции.

    К тому же пенополистирол внутри помещения неподходящий по пожарным требованиям, крайне опасен при плавлении, без ограждения от жилого пространства несгораемой перегородкой…

    Как использовать Пеноплекс для утепления

    Пеноплекс, как и любой другой экструдированный пенополистирол в соответствии с рекомендациями производителя хорошо подходит для утепления грунта вокруг дома при возведении мелкозаглубленных фундаментов. Уложенный под отмостку, он надежно оградит грунт от осадков и мороза.

    Для утепления фундаментов рекомендуется применять экструдированный пенополистирол. При этом он наклеивается на обмазочную гидроизоляцию, образуя с ней прочный теплоизоляционный и водоупорный слой.

    Важно проклеить и швы (шип-паз) между плитами утеплителя.

    Где нельзя применять Пеноплекс

    Но экструдированный пенополистирол нельзя применять с материалами, которые его разрушают.

    С чем нельзя применять Пеноплекс? — далее приведены вещества, с которыми не должен контактировать экструдированный пенополистирол.

    Следующий список веществ, которые допускаются к контакту.

    Если хочется наклеить на стену…

    Если принято решение по каким-то соображением утеплять стены пеноплексом (возможно из-за заявлений производителя о большой долговечности материла…), то технологию мокрый фасад нужно сделать по крайней мере правильно.

    • Снизу и сверху обрывающиеся слой утепления должен быть защищен соответствующими планками.
    • Обеспечивается ровная прочная поверхность стены, на которую будет вестись наклейка.
    • Листы наклеиваются соответствующим клеем, с максимально-наибольшей площадью плотного контакта со стеной на клею… А также многое другое ….

    Подробней как утеплить фасад дома и другие стены с помощью технологии мокрый фасад самостоятельно, можно ознакомиться здесь….

    Утеплитель пеноплекс (ЭПС) — характеристики, область применения и монтаж

    Экструдированный вспененный полистирол (ЭПС) выпускается в виде плит. Часто его называют пеноплексом. Но следует знать, что пеноплекс — это бренд (такой же как «Гипрок» — гипсокартон или «Макрофлекс» — монтажная пена). Структура рассматриваемого утеплителя схожа со структурой обычного пенопласта. Являясь подвидом полистирольного пенопласта, пеноплекс выделяется более высокой плотностью и прочностью, имеет мелкоячеистую однородную структуру, состоящую из практически полностью закрытых ячеек. Данный материал является лучшим видом полистирольных пластмасс. ЭПС (пеноплекс) изготавливают методом экструзии, в результате чего шарики полистирола плавятся, образуя однородную массу, которая заливается в форму, где и остывает. В данной статье мы подробно рассмотрим утеплитель пеноплекс, его технические характеристики, достоинства, области применения и особенности монтажа.

    Технические характеристики пенополистирола (ЭПС)

    Пеноплекс производиться в результате воздействия на гранулы полистирола высокой температуры и давления. Добавляя на следующей стадии смесь из двуокиси углерода и легкого фреона получают пористую массу, которую затем выдавливают из экструзионной установки. После изготовления плит в ячейках происходит относительно быстрое замещение остаточного фреона окружающим воздухом.

    Пеноплекс среди материалов для теплоизоляции выделяется следующими характеристиками:

    • Низкой теплопроводностью. Теплопроводность пеноплекса в сравнении с другими теплоизоляционными материалами значительно ниже и составляет 0,03 ВТ/м·К.
    • Высокой прочностью на сжатие и на изгиб. Экструзия позволяет добиться однородности структуры материала. Равномерно распределенные ячейки улучшают прочностные характеристики материала, который не меняет свои размеры даже при больших нагрузках.
    • Низким водопоглощением (не более 0,2 — 0,4 % по объему за 24 часа). В ходе испытаний плиты ЭПС на месяц оставляли в воде. При этом жидкость впитывалась в небольшом количестве лишь первые 10 дней, после чего материал переставал забирать влагу. В конце срока количество воды в плитах не превышало 0,6 процентов от их общего объема.
    • Низкой паропроницаемостью (коэффициент паропроницаемости 0,007-0,008 мг/м·ч·Па). Слой плит из этого материала толщиной всего 2 сантиметра имеет такую же паропроницаемость, как и слой рубероида.
    • Долговечностью (срок эксплуатации — более 50 лет). Многократные циклы по замораживанию и оттаиванию плит показали, что все характеристики материала после испытаний остаются неизменными.
    • Стойкостью к горению. При изготовлении этого материала применяются фреоны, являющиеся безопасными и не горючими. Они не являются ядовитыми и не разрушают озоновый слой.
    • Экологической безопасностью. Большинство химических веществ, используемых в строительстве, не способны вступать в реакцию с пеноплексом. Исключение: толуол, ксилол, бензол и подобные им углеводороды; формалин и формальдегид; эфиры, как простые, так и сложные; бензины, керосины; краски на масляной основе и другие органические растворители.
    • Широким температурным диапазоном эксплуатации (-50ºС до +75ºС). Однако при чрезмерном нагревании материал может плавиться и воспламеняться.

    Выделим для наглядности все физические и механические свойства в виде таблицы:

    Показатели Метод испытания Размерность Типы ПЕНОПЛЕКСА (старые типы)
    Пеноплэкс (31С) Пеноплэкс стена (31С) Пеноплэкс фундамент (35 без антиперенов) Пеноплэкс кровля (35) 45С 45
    Плотность ГОСТ 17177-94 кг/м² 25,0 — 35,0 25,0 — 32,0 29,0 — 33,0 28,0 — 33,0 35,0 — 40,0 38,1 — 45,0
    Прочность на сжатие при 10% линейной деформации, не менее ГОСТ 17177-94 МПа (кгс/см²;т/м²) 0,20 (2; 20) 0,20 (2; 20) 0,27 (2,7; 27) 0,25 (2,5; 25) 0,41 (4,1; 41) 0,50 (5; 50)
    Предел прочности при статическом изгибе, не менее ГОСТ 17177-94 МПа 0,25 0,25 0,4 0,4 0,4 0,4 — 0,7
    Модуль упругости СОЮЗ ДОР НИИ МПа 15 18 18
    Водопоглащение за 24 часа, не более ГОСТ 17177-94 % по объему 0,4 0,4 0,4 0,4 0,4 0,2
    Водопоглащение за 28 суток % по объему 0,5 0,5 0,5 0,5 0,5 0,4
    Категория стойкости к огню ФЗ — 123 группа Г4 Г3 Г4 Г3 Г4 Г4
    Коэффициент теплопроводности при (25±)°С ГОСТ 7076-94 Вт/(м·°К) 0,03 0,03 0,03 0,03 0,03 0,03
    Расчетный коэффициент теплопроводности при условиях эксплуатации «А» СП 23-101-2004 Вт/(м·°К) 0,031 0,031 0,031 0,031 0,031 0,031
    Расчетный коэффициент теплопроводности при условиях эксплуатации «Б» СП 23-101-2004 Вт/(м·°К) 0,032 0,032 0,032 0,032 0,032 0,032
    Звукоизоляция перегородки (ГКЛ — пеноплэкс 50 мм — ГКЛ), Rw ГОСТ 27296-87 ДБ 41 41 41
    Индекс улучшения изоляции структурного шума в конструкции пола ГОСТ 16297-80 ДБ 23 23 23
    Стандартные размеры Ширина мм 600
    Высота мм 1200 2400
    Толщина мм 20,30,40,50,60,80,100 40,50,60,80,100
    Температурный диапазон эксплуатации ТУ ºС -50 до +75

    Пенополистирол обычно продается упаковками объемом 0,25 — 0,3 м³. В зависимости от толщины листа будет варьировать и площадь поверхности, которую можно покрыть используя одну упаковку.

    Применение и виды пеноплекса

    Учитывая, что пеноплекс обладает рядом преимуществ, то сфера его применения довольно обширна. ЭПС служит превосходным утеплителем как внутри помещений, так и снаружи. Он отлично подойдет для квартир, домов, дач и других сооружений. Пеноплекс можно использовать для утепления крыш, мансард, балконов, причем в любом климатическом регионе без использования дополнительного влагозащитного слоя. Так как материал практически не впитывает воду, то его вполне возможно использовать в среде с большой влажностью. При этом его теплопроводность остается почти неизменной. В продаже имеются листы ЭПС различной толщины, и в зависимости от конкретных требований всегда можно выбрать оптимальный вариант.

    Помимо разнообразия размеров, экструдированный пенополистирол выпускается нескольких видов в зависимости от плотности и области применения. Рассмотрим каждый тип:

    • Пеноплекс Стена.Старое название Пеноплэкс 31 с антипиренами. Данный материал имеет плотность 25-32 кг/м³ и предназначен для эффективного утепления наружных и внутренних стен, перегородок, цоколей. Данные плиты так же применяют в строительстве зданий при возведении стен «колодцевой кладкой». По сравнению с традиционными кирпичными такие стены получаются намного тоньше, но не уступают им ни в надежности, ни в способности удерживать тепло. В случае утепления наружных стен пеноплексом, поверх утеплителя можно выполнить штукатурную систему по сетке, либо облицевать любым облицовочным фасадным материалом (сайдинг, плитка, вагонка).
    • Пеноплекс Фундамент.Старое название Пеноплэкс 35 без антипирена. Данный материал имеет плотность 29-33 кг/м³ и обладает высокими теплоизоляционными характеристиками, минимальным коэффициентом водопоглощения и устойчивостью к воздействию химических и биологических разрушающих факторов. Его водоотталкивающая способность позволяет применять его в качестве гидроизоляционного покрытия. Пеноплекс Фундамент представляет собой жесткие плиты со ступенчатой кромкой, применяемые при строительстве подвальных помещений, возведении фундаментов, утеплении септиков. Плиты очень прочны и способны противостоять существенным нагрузкам. Поэтом их можно также использовать как основу для садовых дорожек, цоколей, полов.
    • Пеноплекс Кровля.Старое название Пеноплэкс 35. Данный материал имеет плотность 28-33 кг/м³ и хорошо изолирует здание от холодного воздуха, обладает минимальным водопоглощением, способностью хорошо изолировать шум, и длительным сроком службы. Плиты имеют стандартный размер 600х1200 мм, но при необходимости их можно легко разрезать любым подручным инструментом. А малый вес плит позволяет использовать их без усиления кровельных конструкций. Ступенчатая кромка, расположенная по периметру, выступает дополнительной гарантией того, что на стыках плит не будут образовываться «мостики холода». Пеноплексом данного вида можно изолировать кровлю любого типа. Однако, чаще данный утеплитель применяют для утепления плоских крыш, а также для утепления чердачного помещения вентилируемой крыши.
    • Пеноплекс Комфорт.Старое название Пеноплэкс 31С. Такой материал имеет плотность 25-35 кг/м³ и у него крайне низкий коэффициент теплопроводности, высокая гидрофобность, отличная способность изолировать шум. Он не гниет и не является благоприятной средой для расселения насекомых, плесени и грибков. Пеноплекс Комфорт выпускается в виде плит размером 600х1200 мм, которые имеют по периметру кромку в виде ступеньки. Она служит дополнительной гарантией точного монтажа. Являясь своего рода универсальным, данный утеплитель для теплоизоляции частного дома просто идеален. Им можно утеплять пол, фундамент, цоколь, кровлю и стены.
    • Пеноплекс 45. Такой материал имеет плотность 35-47 кг/м³ и применяется в качестве утеплителя дорожных покрытий, в частности взлетно-посадочных полос, для предотвращения их от морозного пучения грунта и разрушения верхнего слоя полотна. Широко применяется так же для утепления эксплуатируемых кровель, на которых располагаются пешеходные зоны и различные площадки, в том числе и парковки.

    Технология монтажа полистирольных плит утепления

    Утепление наружных, внутренних стен и иных конструкций с использованием экструдированного полистирола производится в несколько этапов. Рассмотрим каждый из них:

    • Подготовительный этап заключаются в подготовке стен к утеплению, их очистке от грязи, пыли, старых отделочных материалов, лакокрасочных покрытий. При больших неровностях поверхность рекомендуется выровнять с помощью штукатурной смеси (и другими способами в зависимости от конструкции) и обработать противогрибковым составом.
    • Фиксация с помощью специальных клеевых фасадных составов. Клей наносится непосредственно на теплоизоляционную плиту гребенкой.
    • Механическое крепление производится при помощи дюбелей.
    • Монтаж фасадной сетки. Для лучшего сцепления клея с утеплителем можно создать шероховатость на поверхности плит. Первым штукатурным слоем фасадного клея фиксируется армирующая полимерная сетка. Далее наносится второй штукатурный слой, после высыхания которого, стены покрывают декоративной штукатуркой (по желанию) и окрашивают.
    • Вместо штукатурки возможна отделка стен сайдингом, деревом, а так же применение вентилируемых фасадов.

    Технология монтажа ЭПС

    Теплоизоляцию кровель производят либо на этапе строительства, либо в процессе реконструкции, например, при переводе холодного чердака в жилое помещение. При этом утеплитель укладывают на основание в несколько слоев (места стыков верхнего слоя не должны совпадать со стыками нижнего). Далее на пеноплекс расстилается паропроницаемая мембрана. Полученный пирог закрепляется продольными рейкам толщиной не менее 40 мм, для обеспечения вентиляции между утеплителем и кровельным материалом.

    Видео по теме

    Рассмотрев утеплитель пеноплекс, можно выделит, что по сравнению с аналогами он имеет более высокую стоимость. Но, с другой стороны, удобство работы, большая прочность и отличные свойств перекрывают этот недостаток. Поэтому, выбирая теплоизоляционный материал для своего жилища, дополнительно прочтите отзывы потребителей и рассмотрите все возможные альтернативы.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: